CS6780 Summary and Conclusions

CS6780 – Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

Theme: Prediction and Action

- <u>Building intelligent systems</u> vs. analyzing existing systems
 - Prediction
 - Intelligent action
 - Guarantees on prediction/action quality
 - Causality

Theme: Bias vs. Variance

• Fundamental trade-off in learning

- Training error vs. prediction error
- Model capacity
- Statistical learning theory
- Empirical risk minimization

Theme: Massive Overparameterization

- The success story of machine learning
 - Regularized linear models
 - Kernels
 - Deep networks
 - \rightarrow Number of parameters \gg number of examples

Theme: Theoretical Underpinning

- Theory for understanding sake
 - Identify the mechanisms at play in ML
 - Understand model complexity
 - Understand common themes between algorithms

Secondary Syllabus

- Practice "soft skills" needed to be a successful researcher
 - Pitch ideas
 - Present your work
 - Write convincing papers
 - Work in groups
 - Give constructive feedback to others
 - Use feedback constructively

Batch Learning Approaches

- Empirical Risk Minimization (ERM)
 - Fixed at training time: class of decision rules h: X \rightarrow Y, loss, x and y
 - Strategy: minimize training loss
- Conditional Probability Models
 - Fixed at training time: class of models for P(Y|X), x and y
 - Strategy: max conditional likelihood or MAP (or Bayes)

Generative Models

- Fixed at training time: class models for P(Y,X)
- Strategy: max likelihood or MAP (or Bayes)

Not covered: Bayesian ML perspective → ORIE 6741, Andrew Wilson

Batch Learning for Classification

Other Methods

- RBF Networks

- Boosting

Bagging

Models

- *-Regression

- *-Multiclass

Logical rule learning

- Gaussian Processes

Parametric (Graphical)

• ERM

- Decision Trees
- Perceptron
 Linear SVMs
- Linear SVMs
 Kernel SVMs
- Neural Networks
- Conditional Probability
- Logistic Regression
- Conditional Random Fields
- Ridge Regression
- Generative
 - Multinomial Naïve Bayes
 - Multivariate Naïve Bayes
 - Linear Discriminant
- → Methods + Theory + Algorithms + Practice

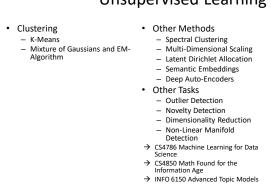
Batch Learning for Struct Prediction

- ERM
 - Structural SVMs
- Conditional Probability
- Conditional Random
 Fields
- Generative
 - Hidden Markov Model

- Other Methods
 - Maximum Margin
 Markov Networks
 - Markov Random Fields
 - Bayesian Networks
 Statistical Relational Learning
 - Markov Logic Networks
 - Encoder/Decoder
 Networks

NLP classes

 \rightarrow Claire Cardie


- Halving Algorithm
- Weighted Majority
- Exponentiated Gradient
- · Bandit Setting
- EXP3
- UCB1

- Online Learning
- Other Methods
- lgorithm
- Follow the Leader
- Zooming

Hedge

- Partial Monitoring
- Contextual Bandits
- Dueling Bandits
- Coactive Learning

CS6783 Machine Learning Theory → Karthik Sridharan

Unsupervised Learning

- Covered
 - Convolutional Neural Networks (LeNet)

ML in Computer Visions

• Other

- More Deep Learning Even more Deep Learning
- CS6670 Computer Vision → Bharath Hariharan CS4670 Intro Computer Vision → Serge Belongie → Bharath Hariharan

Learning to Act

- Covered
 - Off-policy policy learning
 - Atomic actions
 - Combinatorial actions

· Other

- Sequential decisions
- Markov Decision Processes
- Reinforcement learning
- On policy vs. off policy
- Policy gradient

ML and Causality

- Covered
- Potential outcomes model
- Treatment effect estimation

• Other

- Observational setting
- Instrumental variables
- Continuous treatments
- Longitudinal treatments
- Causal discovery
- Parameter inference
- Causal networks
- Structural equation models

ML and Fairness Covered • Other Fairness - Accountability - Transparency - Criteria and policy - Algorithms and guarantees - Classification - Ranking INFO4270: Ethics and Policy in DS → Solon Barocas

Other Machine Learning Courses at Cornell INFO 3300 - Data-Driven Web Pages CS 4700 - Introduction to Artificial Intelligence CS 4780/5780 - Machine Learning for Intelligent Systems CS 4786/5786 - Machine Learning for Data Science CS 4787 - Principles of Large-Scale Machine Learning OR 4740 - Statistical Data Mining CS 6780 - Advanced Machine Learning CS 6783 - Machine Learning Theory CS 6784 - Advanced Topics in Machine Learning

- CS 6787 Advanced Machine Learning Systems ORIE 6740 Statistical Learning Theory for Data Mining
- ORIE 6741 Bayesian Machine Learning
- ORIE 6750 Optimal learning ORIE 6780 Bayesian Statistics and Data Analysis
- INFO 6150 Advanced Topic Models
- MATH 7740 Statistical Learning Theory CS 7790 Al Seminar
- CS 7792 Special Topics in Machine Learning