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Evaluating Rankings

* What influences the quality of a ranking?

— How relevant is document d at rank r?
* Explicit feedback
— User ratings
— Expert ratings
 Implicit feedback
— Clicks, dwell time, mousing, scrolling, ...
— How likely is user going to view rank r?
* Behavioral user model

Eye-Tracking

Eye tracking device

Record where and what

people look at

— Fixations: ~200-300ms;
information is acquired

— Saccades: extremely rapid
movements between
fixations

— Pupil dilation: size of pupil
indicates interest, arousal

“Scanpath” output depicts pattem of movement
i throughout screen. Black markers represent fixations.

[Granka et al., 2007]

How Many Links do Users View?

Total number of abstracts viewed per page
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Mean: 3.07 Median/Mode: 2.00

[Granka et al., 2007]

In Which Order are the Results
Viewed?

Instance of arrival to each result
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=> Users tend to read the results in order

[Granka et al., 2007]




Do Users Look Below the Clicked

Link?

Viewed Clicked Rank

Rank 1 2

4 5 6
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=> Users typically do not look at links below
before they click (except maybe the next link)

[Granka et al., 2007]

Ranking Evaluation Metrics

Given: vector of relevance labels r
* Precision@k

— Percentage of relevant results in top k
* Rank of Relevant documents

MG = rank(ily) -7

L

* Discounted Cumulative Gain (DCG)

4
Alylr) = z log(l + rank(l'b’))

i

Learning to Rank Methods

* Joint feature map ¢ (x, d)
— Feature vector describing the match between query x

and document d
* Pointwise LTR

— Learn regression #: p(x,d) > R
— Prediction via y = argsort{#(¢(x,d))}
D

Listwise LTR
— Learn ranking policy T

—Risk R(m) = [ A(m(x)|r) P(x,7)
— Minimize Empirical Risk R () = Z(x'r)A(rt(x)V)

Ranking SVM
R
Data: S

: = (%, D577
.. Optimizes convex
* Policies: y = argsort{w - ¢(x,d)} i
D documents!
¢ Training QP:

* Loss Bound:
vw:rank(d,argsort(w - ¢(x,d)) < Z &+ #rel
7

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]

Explicit vs.

Explicit feedback
* Need to pay “experts”

* Slow to gather

* Potential expert-user
mismatch

* Not personalized
* Complete feedback

Implicit Feedback

Implicit feedback

* Free as by-product of
system use

* Immediately available

* User provided, but spam-
able

* Personalized

* Partial and biased by
presentation

Interaction Logs: Search Engine

* Context x:

— Query
* Action y:
— Ranking
Feedback §(x, y):
— Clicks on SERP




Interaction Logs: Online Retail
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Interaction Logs: Streaming Media

¢ Context x:
— User
¢ Action y:
— Tile layout
— Scroll layout
* Feedback §(x, y):
— Plays

Query Distribution

Learning-to-Rank from Clicks
x; ~ P(X)
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Evaluating Rankings

Deployed Ranker New Ranker to Evaluate
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Evaluation with Missing Judgments

* Loss: A(y|r)
— Relevance labels 1; € {0,1} Presented

— This talk: rank of relevant documents
Aylr) = Z rank(ily) - r;

L
* Assume:

— Click implies observed and relevant:
(G=Del=DA0=1)

* Problem:
— No click can mean not relevant OR not observed

(=00 (;=0)Vv(r;=0)

-> Understand observation mechanism

[oachims et al,, 2017]

Inverse Propensity Score Estimator

* Observation Propensities Q(0; = 1|x,¥,7)

— Random variable o; € {0,1} indicates whether
relevance label r; for is observed

Presented y

* Inverse Propensity Score (IPS) Estimator:

rank(ily)

201 2, o= 1)
i:ici=1

New Ranking

* Unbiasedne

[Bylr0)] = atin

Need to know the
propensities only for
relevant/clicked docs.

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009] [Joachims et al., 2017]




ERM for Partial-Information LTR

* Unbiased Empirical Risk:

Consistent

ﬁ ( ) 1 Tank(i |7T(X)) Estimator of
1psUL) =y Do =115 ) True
N (x,y,0)€S i:ci=1 Q(oi - 1|y’ ) Performance

* ERM Learning:

~ ) Consistent
n= arg;nm RIPS(T[) ERM Learning
* Questions:

— How do we optimize this empirical risk in a practical
learning algorithm?

— How do we_deﬁne and estimate the propensity model
Q(o; = 1|y,7)?

[Joachims et al,, 2017]

Propensity-Weighted SVM Rank

n
« Data: S =(x;,d;,D;,q,) pinis o
unbiased IPS risk

estimate!

Propensity

* Training QP:

* Loss Bound:
vw:rank(d, sort(w - ¢(x,d)) < Z &+

L
[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]

Position-Based Propensity Model

* Model:
[rreseedy | 0 |

P(c; = 1|r, rank(ily)) =

A a1
Qrank(ily) * [T = 1]
rank(ily) B g
* Assumptions C s
— Examination only depends on D s
rank E .
— Click reveals relevance if rank is >
examined F 96
G q7

[Richardson et al., 2007] [Chuklin et al,, 2015] [Wang et al., 2016]

Experiments

ey | |

* Yahoo Web Search Dataset
— Full-information dataset
— Binarized relevance labels

* Generate synthetic click data -
based on -
— Position-based propensity model
e “
with q, = (;
— Baseline “deployed” ranker to B -
generate y Click
— 33% noisy clicks on irrelevant docs -

Scaling with Training Set Size
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[Joachims et al,, 2017

Scaling with Training Set Size
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Severity of Presentation Bias
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Misspecified Propensities
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[Joachims et al., 2017]

Position-Based Propensity Model

* Model:
P(c; = 1|r, rank(ily)) =

Crseneay | o

Estimating the Propensities

* |dea: Randomization to control for relevance
-> Swap Interventions
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[Wang et al., 2016; Joachims et al., 2017)

A a1
Trank(ify) " [1i = 1] B g
2
* Assumptions C s
— Examination only depends on D s
rank
. ) ) E qs
— Click reveals relevance if rank is
examined F 96
G q7
[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016] [Joachims et al., 2017]
Real-World Experiment
* Arxiv Full-Text Search - =
— Run Swap(1,r) experiment to
estimate g,

— Collect training clicks using
production ranker

— Train naive / propensity
SVM-Rank (1000 features)

— A/B tests via interleaving

Propensity SVM-Rank

Interleaving Experiment wins loses ties
gainst Prod 87 18 5]
st Naive SVM-Rank i G0 102

Conclusions

* Learning to Rank
— from expert ratings
* Pointwise: estimate relevance
* Listwise: ERM to optimize ranking metric
— from user interactions
* Deal with missing relevance labels
* Use IPS to get unbiased ERM objective
* Other Aspects

— Fairness constraints on ranking policy




