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Learning To Rank

Goal: Learn 
policy 𝜋 𝑥 that 

produces a 
ranking 𝑦 of 

candidates w.r.t. 
query 𝑥.



Evaluating Rankings

• What influences the quality of a ranking?

– How relevant is document d at rank r?

• Explicit feedback
– User ratings

– Expert ratings

• Implicit feedback
– Clicks, dwell time, mousing, scrolling, …

– How likely is user going to view rank r?

• Behavioral user model



Eye-Tracking

Record where and what 
people look at 

– Fixations: ~200-300ms; 
information is acquired

– Saccades: extremely rapid 
movements between 
fixations 

– Pupil dilation: size of pupil 
indicates interest, arousal

Eye tracking device

“Scanpath” output depicts pattern of movement 
throughout screen. Black markers represent fixations.

[Granka et al., 2007]



How Many Links do Users View?

Total number of abstracts viewed per page
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Mean: 3.07    Median/Mode: 2.00

[Granka et al., 2007]



In Which Order are the Results 
Viewed?

=> Users tend to read the results in order

Instance of arrival to each result
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[Granka et al., 2007]



Do Users Look Below the Clicked 
Link?

=> Users typically do not look at links below 
before they click (except maybe the next link)

[Granka et al., 2007]



Ranking Evaluation Metrics

Given: vector of relevance labels 𝑟

• Precision@k
– Percentage of relevant results in top k

• Rank of Relevant documents

Δ 𝑦 𝑟 = 

𝑖

𝑟𝑎𝑛𝑘 𝑖 𝑦 ⋅ 𝑟𝑖

• Discounted Cumulative Gain (DCG)

Δ 𝑦 𝑟 = 

𝑖

𝑟𝑖

log 1 + 𝑟𝑎𝑛𝑘 𝑖 𝑦



Learning to Rank Methods

• Joint feature map 𝜙 𝑥, 𝑑
– Feature vector describing the match between query x 

and document d

• Pointwise LTR
– Learn regression  𝑟: 𝜙 𝑥, 𝑑 → ℜ

– Prediction via 𝑦 = argsort
𝐷

 𝑟 𝜙 𝑥, 𝑑

• Listwise LTR
– Learn ranking policy 𝜋
– Risk 𝑅 𝜋 = ∫ Δ 𝜋 𝑥 |𝑟 𝑃(𝑥, 𝑟)

– Minimize Empirical Risk  𝑅 𝜋 =  (𝑥,𝑟)Δ 𝜋 𝑥 |𝑟



Ranking SVM

• Data:      𝑆 = 𝑥𝑗 , 𝐷𝑗 , 𝑟𝑗
𝑛

• Policies: 𝑦 = argsort
𝐷

𝑤 ⋅ 𝜙 𝑥, 𝑑

• Training QP:

• Loss Bound: 

𝑤∗ = argmin
𝑤,𝜉≥0

1

2
𝑤 ⋅ 𝑤 +

𝐶

𝑛
 

𝑗

.  

(𝑑,  𝑑)

𝜉𝑗
(𝑑,  𝑑)

∀ 𝑑1,  𝑑1 ∈ 𝐷1: 𝑤 ⋅ 𝜙 𝑥1, 𝑑1 − 𝜙 𝑥1,  𝑑1 ≥ 1 − 𝜉1
(𝑑,  𝑑)

⋮

∀ 𝑑𝑛,  𝑑𝑛 ∈ 𝐷𝑛: 𝑤 ⋅ 𝜙 𝑥1, 𝑑𝑛 − 𝜙 𝑥1,  𝑑𝑛 ≥ 1 − 𝜉1
(𝑑,  𝑑)

∀𝑤: 𝑟𝑎𝑛𝑘 𝑑, 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑤 ⋅ 𝜙(𝑥, 𝑑) ≤  

𝑖

𝜉𝑖 + #𝑟𝑒𝑙

Query Candidates Relevances

Optimizes convex 
upper bound on 
rank of relevant 

documents!

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]



Explicit vs. Implicit Feedback

Explicit feedback

• Need to pay “experts”

• Slow to gather

• Potential expert-user 
mismatch

• Not personalized

• Complete feedback

Implicit feedback

• Free as by-product of 
system use

• Immediately available

• User provided, but spam-
able

• Personalized

• Partial and biased by 
presentation



Interaction Logs: Search Engine

• Context 𝑥: 

– Query

• Action 𝑦: 

– Ranking

• Feedback 𝛿 𝑥, 𝑦 :

– Clicks on SERP



Interaction Logs: Online Retail

• Context 𝑥: 

– Category

• Action 𝑦: 

– Tile Layout

• Feedback 𝛿 𝑥, 𝑦 :

– Attributable purchases



Interaction Logs: Streaming Media

• Context 𝑥: 

– User

• Action 𝑦: 

– Tile layout

– Scroll layout

• Feedback 𝛿 𝑥, 𝑦 :

– Plays



Learning-to-Rank from Clicks
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New Ranker 
𝜋(𝑥)

Learning 
Algorithm

Query Distribution
𝑥𝑖 ∼ 𝑷(𝑿)

Deployed Ranker 
 𝑦𝑖 = 𝝅𝟎(𝑥𝑖)

Should perform 
better than 
𝜋0(𝑥)



New 𝒚
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Evaluation with Missing Judgments

• Loss: Δ 𝑦|𝑟
– Relevance labels 𝑟𝑖 ∈ {0,1}
– This talk: rank of relevant documents

Δ 𝑦 𝑟 = 

𝑖

𝑟𝑎𝑛𝑘 𝑖 𝑦 ⋅ 𝑟𝑖

• Assume:
– Click implies observed and relevant: 

𝑐𝑖 = 1  𝑜𝑖 = 1 ∧ 𝑟𝑖 = 1

• Problem: 
– No click can mean not relevant OR not observed 

𝑐𝑖 = 0  𝑜𝑖 = 0 ∨ (𝑟𝑖 = 0)

 Understand observation mechanism

Presented  𝒚
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[Joachims et al., 2017]



Inverse Propensity Score Estimator

• Observation Propensities 𝑄 𝑜𝑖 = 1|𝑥,  𝑦, 𝑟
– Random variable 𝑜𝑖 ∈ {0,1} indicates whether 

relevance label 𝑟𝑖 for is observed

• Inverse Propensity Score (IPS) Estimator:

• Unbiasedness: 𝐸𝑜  Δ(𝑦│𝑟, 𝑜) = Δ 𝑦 𝑟

 Δ 𝑦 𝑟, 𝑜 =  

𝑖:𝑐𝑖=1

𝑟𝑎𝑛𝑘 𝑖 𝑦

𝑄 𝑜𝑖 = 1| 𝑦, 𝑟

Presented  𝒚 𝑄

A 1.0

B 0.8

C 0.5 

D 0.2

E 0.2

F 0.2

G 0.1

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009] [Joachims et al., 2017]

New Ranking

Need to know the 
propensities only for 
relevant/clicked docs.



ERM for Partial-Information LTR

• Unbiased Empirical Risk:

 𝑅𝐼𝑃𝑆 𝜋 =
1

𝑁
 

𝑥,  𝑦,𝑐 ∈𝑆

 

𝑖:𝑐𝑖=1

𝑟𝑎𝑛𝑘 𝑖 𝜋 𝑥

𝑄 𝑜𝑖 = 1| 𝑦, 𝑟

• ERM Learning:

• Questions:
– How do we optimize this empirical risk in a practical 

learning algorithm?
– How do we define and estimate the propensity model 
𝑄 𝑜𝑖 = 1| 𝑦, 𝑟 ?

 𝜋 = argmin
𝑆

 𝑅𝐼𝑃𝑆 𝜋

Consistent 
Estimator of 

True 
Performance

Consistent 
ERM Learning

[Joachims et al., 2017]



Propensity-Weighted SVM Rank

• Data:               𝑆 = 𝑥𝑗 , 𝑑𝑗 , 𝐷𝑗 , 𝑞𝑗
𝑛

• Training QP:

• Loss Bound: 

𝑤∗ = argmin
𝑤,𝜉≥0

1

2
𝑤 ⋅ 𝑤 +

𝐶

𝑛
 

𝑗

1

𝑞𝑗
 

𝑖

𝜉𝑗
𝑖

∀  𝑑𝑖 ∈ 𝐷1: 𝑤 ⋅ 𝜙 𝑥1, 𝑑1 − 𝜙 𝑥1,  𝑑𝑖 ≥ 1 − 𝜉1
𝑖

⋮
∀  𝑑𝑖 ∈ 𝐷𝑛: 𝑤 ⋅ 𝜙 𝑥𝑛, 𝑑𝑛 − 𝜙 𝑥𝑛,  𝑑𝑖 ≥ 1 − 𝜉𝑛

𝑖

∀𝑤: 𝑟𝑎𝑛𝑘 𝑑, 𝑠𝑜𝑟𝑡(𝑤 ⋅ 𝜙(𝑥, 𝑑) ≤  

𝑖

𝜉𝑖 + 1

Query Clicked Others Propensity

Optimizes convex 
upper bound on 
unbiased IPS risk 

estimate!

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]



Position-Based Propensity Model

• Model:

• Assumptions

– Examination only depends on 
rank 

– Click reveals relevance if rank is 
examined

𝑃 𝑐𝑖 = 1|𝑟𝑖 , 𝑟𝑎𝑛𝑘 𝑖  𝑦 =

𝑞𝑟𝑎𝑛𝑘 𝑖  𝑦 ⋅ [𝑟𝑖 = 1]

Presented  𝒚 𝑄
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D 𝑞4

E 𝑞5

F 𝑞6

G 𝑞7

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016]
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Experiments

• Yahoo Web Search Dataset
– Full-information dataset
– Binarized relevance labels

• Generate synthetic click data 
based on 
– Position-based propensity model 

with 𝑞𝑟 =
1

𝑟

𝜂

– Baseline “deployed” ranker to 
generate  𝑦

– 33% noisy clicks on irrelevant docs
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Scaling with Training Set Size

Deployed Ranker

[Joachims et al., 2017]



Scaling with Training Set Size

[Joachims et al., 2017]



Severity of Presentation Bias

𝑞𝑟 =
1

𝑟

𝜂

[Joachims et al., 2017]



Misspecified Propensities

𝑞𝑟 =
1

𝑟

𝜂

Increase bias 
Reduce variance

Increase bias 
Increase variance

[Joachims et al., 2017]



Position-Based Propensity Model

• Model:

• Assumptions

– Examination only depends on 
rank 

– Click reveals relevance if rank is 
examined

𝑃 𝑐𝑖 = 1|𝑟𝑖 , 𝑟𝑎𝑛𝑘 𝑖  𝑦 =

𝑞𝑟𝑎𝑛𝑘 𝑖  𝑦 ⋅ [𝑟𝑖 = 1]
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[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016] [Joachims et al., 2017]



Estimating the Propensities

• Idea: Randomization to control for relevance
 Swap Interventions

 𝒚
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x
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E 𝑐1|𝑇1 = 𝑞1 ⋅ 𝐸 𝑟1 = 1 𝑟𝑎𝑛𝑘 𝑑  𝑦 = 1)

E 𝑐3|𝑇2 = 𝑞3 ⋅ 𝐸 𝑟1 = 1 𝑟𝑎𝑛𝑘 𝑑  𝑦 = 1)


𝑞1

𝑞𝑘
=
E 𝑐1|𝑇1

E 𝑐𝑘|𝑇2

[Wang et al., 2016; Joachims et al., 2017]
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Real-World Experiment

• Arxiv Full-Text Search
– Run Swap(1,r) experiment to 

estimate 𝑞𝑟
– Collect training clicks using 

production ranker

– Train naïve / propensity 
SVM-Rank (1000 features)

– A/B tests via interleaving



Conclusions
• Learning to Rank 

– from expert ratings

• Pointwise: estimate relevance

• Listwise: ERM to optimize ranking metric

– from user interactions

• Deal with missing relevance labels

• Use IPS to get unbiased ERM objective

• Other Aspects

– Fairness constraints on ranking policy


