
Learning to Rank

CS6780 – Advanced Machine Learning

Spring 2019

Thorsten Joachims

Cornell University

Learning To Rank

Goal: Learn
policy 𝜋 𝑥 that

produces a
ranking 𝑦 of

candidates w.r.t.
query 𝑥.

Evaluating Rankings

• What influences the quality of a ranking?

– How relevant is document d at rank r?

• Explicit feedback
– User ratings

– Expert ratings

• Implicit feedback
– Clicks, dwell time, mousing, scrolling, …

– How likely is user going to view rank r?

• Behavioral user model

Eye-Tracking

Record where and what
people look at

– Fixations: ~200-300ms;
information is acquired

– Saccades: extremely rapid
movements between
fixations

– Pupil dilation: size of pupil
indicates interest, arousal

Eye tracking device

“Scanpath” output depicts pattern of movement
throughout screen. Black markers represent fixations.

[Granka et al., 2007]

How Many Links do Users View?

Total number of abstracts viewed per page

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Total number of abstracts viewed

fr
e

q
u

e
n

c
y

Mean: 3.07 Median/Mode: 2.00

[Granka et al., 2007]

In Which Order are the Results
Viewed?

=> Users tend to read the results in order

Instance of arrival to each result

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9 10

Rank of result

m
e
a
n

 f
ix

a
ti

o
n

 v
a
lu

e
 o

f
a
rr

iv
a
l

[Granka et al., 2007]

Do Users Look Below the Clicked
Link?

=> Users typically do not look at links below
before they click (except maybe the next link)

[Granka et al., 2007]

Ranking Evaluation Metrics

Given: vector of relevance labels 𝑟

• Precision@k
– Percentage of relevant results in top k

• Rank of Relevant documents

Δ 𝑦 𝑟 =

𝑖

𝑟𝑎𝑛𝑘 𝑖 𝑦 ⋅ 𝑟𝑖

• Discounted Cumulative Gain (DCG)

Δ 𝑦 𝑟 =

𝑖

𝑟𝑖

log 1 + 𝑟𝑎𝑛𝑘 𝑖 𝑦

Learning to Rank Methods

• Joint feature map 𝜙 𝑥, 𝑑
– Feature vector describing the match between query x

and document d

• Pointwise LTR
– Learn regression 𝑟: 𝜙 𝑥, 𝑑 → ℜ

– Prediction via 𝑦 = argsort
𝐷

 𝑟 𝜙 𝑥, 𝑑

• Listwise LTR
– Learn ranking policy 𝜋
– Risk 𝑅 𝜋 = ∫ Δ 𝜋 𝑥 |𝑟 𝑃(𝑥, 𝑟)

– Minimize Empirical Risk 𝑅 𝜋 = (𝑥,𝑟)Δ 𝜋 𝑥 |𝑟

Ranking SVM

• Data: 𝑆 = 𝑥𝑗 , 𝐷𝑗 , 𝑟𝑗
𝑛

• Policies: 𝑦 = argsort
𝐷

𝑤 ⋅ 𝜙 𝑥, 𝑑

• Training QP:

• Loss Bound:

𝑤∗ = argmin
𝑤,𝜉≥0

1

2
𝑤 ⋅ 𝑤 +

𝐶

𝑛

𝑗

.

(𝑑, 𝑑)

𝜉𝑗
(𝑑, 𝑑)

∀ 𝑑1, 𝑑1 ∈ 𝐷1: 𝑤 ⋅ 𝜙 𝑥1, 𝑑1 − 𝜙 𝑥1, 𝑑1 ≥ 1 − 𝜉1
(𝑑, 𝑑)

⋮

∀ 𝑑𝑛, 𝑑𝑛 ∈ 𝐷𝑛: 𝑤 ⋅ 𝜙 𝑥1, 𝑑𝑛 − 𝜙 𝑥1, 𝑑𝑛 ≥ 1 − 𝜉1
(𝑑, 𝑑)

∀𝑤: 𝑟𝑎𝑛𝑘 𝑑, 𝑎𝑟𝑔𝑠𝑜𝑟𝑡(𝑤 ⋅ 𝜙(𝑥, 𝑑) ≤

𝑖

𝜉𝑖 + #𝑟𝑒𝑙

Query Candidates Relevances

Optimizes convex
upper bound on
rank of relevant

documents!

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]

Explicit vs. Implicit Feedback

Explicit feedback

• Need to pay “experts”

• Slow to gather

• Potential expert-user
mismatch

• Not personalized

• Complete feedback

Implicit feedback

• Free as by-product of
system use

• Immediately available

• User provided, but spam-
able

• Personalized

• Partial and biased by
presentation

Interaction Logs: Search Engine

• Context 𝑥:

– Query

• Action 𝑦:

– Ranking

• Feedback 𝛿 𝑥, 𝑦 :

– Clicks on SERP

Interaction Logs: Online Retail

• Context 𝑥:

– Category

• Action 𝑦:

– Tile Layout

• Feedback 𝛿 𝑥, 𝑦 :

– Attributable purchases

Interaction Logs: Streaming Media

• Context 𝑥:

– User

• Action 𝑦:

– Tile layout

– Scroll layout

• Feedback 𝛿 𝑥, 𝑦 :

– Plays

Learning-to-Rank from Clicks

Presented 𝒚𝟏

A

B

C

D

E

F

G

Click

Presented 𝒚𝟏

A

B

C

D

E

F

G

Click

Presented 𝒚𝟏

A

B

C

D

E

F

G

Click

Presented 𝒚𝟏

A

B

C

D

E

F

G

Click

Presented 𝒚𝟏

A

B

C

D

E

F

G

Click

Presented 𝒚𝟏

A

B

C

D

E

F

G

Click

Presented 𝒚𝒏

A

B

C

D

E

F

G

Click

Click

New Ranker
𝜋(𝑥)

Learning
Algorithm

Query Distribution
𝑥𝑖 ∼ 𝑷(𝑿)

Deployed Ranker
 𝑦𝑖 = 𝝅𝟎(𝑥𝑖)

Should perform
better than
𝜋0(𝑥)

New 𝒚

F

G

D

C

E

A

B

Presented 𝒚𝒏

A

B

C

D

E

F

G

Evaluating Rankings

Presented 𝒚

A

B

C

D

E

F

G

New 𝒚

F

G

D

C

E

A

B

Presented 𝒚

A

B

C

D

E

F

G

Click

New 𝒚

F

G

D

C

E

A

B

Deployed Ranker
 𝑦 = 𝝅𝟎("𝑺𝑽𝑴")

New Ranker to Evaluate
𝑦 = 𝝅("𝑺𝑽𝑴")

1

2

4

3

6

7

M
an

u
al

ly
 L

ab
e

le
d

Evaluation with Missing Judgments

• Loss: Δ 𝑦|𝑟
– Relevance labels 𝑟𝑖 ∈ {0,1}
– This talk: rank of relevant documents

Δ 𝑦 𝑟 =

𝑖

𝑟𝑎𝑛𝑘 𝑖 𝑦 ⋅ 𝑟𝑖

• Assume:
– Click implies observed and relevant:

𝑐𝑖 = 1 𝑜𝑖 = 1 ∧ 𝑟𝑖 = 1

• Problem:
– No click can mean not relevant OR not observed

𝑐𝑖 = 0 𝑜𝑖 = 0 ∨ (𝑟𝑖 = 0)

 Understand observation mechanism

Presented 𝒚

A

B

C

D

E

F

G

Click

[Joachims et al., 2017]

Inverse Propensity Score Estimator

• Observation Propensities 𝑄 𝑜𝑖 = 1|𝑥, 𝑦, 𝑟
– Random variable 𝑜𝑖 ∈ {0,1} indicates whether

relevance label 𝑟𝑖 for is observed

• Inverse Propensity Score (IPS) Estimator:

• Unbiasedness: 𝐸𝑜 Δ(𝑦│𝑟, 𝑜) = Δ 𝑦 𝑟

 Δ 𝑦 𝑟, 𝑜 =

𝑖:𝑐𝑖=1

𝑟𝑎𝑛𝑘 𝑖 𝑦

𝑄 𝑜𝑖 = 1| 𝑦, 𝑟

Presented 𝒚 𝑄

A 1.0

B 0.8

C 0.5

D 0.2

E 0.2

F 0.2

G 0.1

[Horvitz & Thompson, 1952] [Rubin, 1983] [Zadrozny et al., 2003] [Langford, Li, 2009] [Joachims et al., 2017]

New Ranking

Need to know the
propensities only for
relevant/clicked docs.

ERM for Partial-Information LTR

• Unbiased Empirical Risk:

 𝑅𝐼𝑃𝑆 𝜋 =
1

𝑁

𝑥, 𝑦,𝑐 ∈𝑆

𝑖:𝑐𝑖=1

𝑟𝑎𝑛𝑘 𝑖 𝜋 𝑥

𝑄 𝑜𝑖 = 1| 𝑦, 𝑟

• ERM Learning:

• Questions:
– How do we optimize this empirical risk in a practical

learning algorithm?
– How do we define and estimate the propensity model
𝑄 𝑜𝑖 = 1| 𝑦, 𝑟 ?

 𝜋 = argmin
𝑆

 𝑅𝐼𝑃𝑆 𝜋

Consistent
Estimator of

True
Performance

Consistent
ERM Learning

[Joachims et al., 2017]

Propensity-Weighted SVM Rank

• Data: 𝑆 = 𝑥𝑗 , 𝑑𝑗 , 𝐷𝑗 , 𝑞𝑗
𝑛

• Training QP:

• Loss Bound:

𝑤∗ = argmin
𝑤,𝜉≥0

1

2
𝑤 ⋅ 𝑤 +

𝐶

𝑛

𝑗

1

𝑞𝑗

𝑖

𝜉𝑗
𝑖

∀ 𝑑𝑖 ∈ 𝐷1: 𝑤 ⋅ 𝜙 𝑥1, 𝑑1 − 𝜙 𝑥1, 𝑑𝑖 ≥ 1 − 𝜉1
𝑖

⋮
∀ 𝑑𝑖 ∈ 𝐷𝑛: 𝑤 ⋅ 𝜙 𝑥𝑛, 𝑑𝑛 − 𝜙 𝑥𝑛, 𝑑𝑖 ≥ 1 − 𝜉𝑛

𝑖

∀𝑤: 𝑟𝑎𝑛𝑘 𝑑, 𝑠𝑜𝑟𝑡(𝑤 ⋅ 𝜙(𝑥, 𝑑) ≤

𝑖

𝜉𝑖 + 1

Query Clicked Others Propensity

Optimizes convex
upper bound on
unbiased IPS risk

estimate!

[Herbrich at al., 1999] [Joachims et al., 2002] [Joachims et al., 2017]

Position-Based Propensity Model

• Model:

• Assumptions

– Examination only depends on
rank

– Click reveals relevance if rank is
examined

𝑃 𝑐𝑖 = 1|𝑟𝑖 , 𝑟𝑎𝑛𝑘 𝑖 𝑦 =

𝑞𝑟𝑎𝑛𝑘 𝑖 𝑦 ⋅ [𝑟𝑖 = 1]

Presented 𝒚 𝑄

A 𝑞1

B 𝑞2

C 𝑞3

D 𝑞4

E 𝑞5

F 𝑞6

G 𝑞7

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016]

Presented 𝒚 𝑄

𝑞1

𝑞2

𝑞3

𝑞4

𝑞5

𝑞6

𝑞7

Presented 𝒚 𝑄

A 𝑞1

B 𝑞2

C 𝑞3

D 𝑞4

E 𝑞5

F 𝑞6

G 𝑞7

Experiments

• Yahoo Web Search Dataset
– Full-information dataset
– Binarized relevance labels

• Generate synthetic click data
based on
– Position-based propensity model

with 𝑞𝑟 =
1

𝑟

𝜂

– Baseline “deployed” ranker to
generate 𝑦

– 33% noisy clicks on irrelevant docs

Presented 𝒚 𝑄

A 𝑞1

B 𝑞2

C 𝑞3

D 𝑞4

E 𝑞5

F 𝑞6

G 𝑞7

Click

Click

Scaling with Training Set Size

Deployed Ranker

[Joachims et al., 2017]

Scaling with Training Set Size

[Joachims et al., 2017]

Severity of Presentation Bias

𝑞𝑟 =
1

𝑟

𝜂

[Joachims et al., 2017]

Misspecified Propensities

𝑞𝑟 =
1

𝑟

𝜂

Increase bias
Reduce variance

Increase bias
Increase variance

[Joachims et al., 2017]

Position-Based Propensity Model

• Model:

• Assumptions

– Examination only depends on
rank

– Click reveals relevance if rank is
examined

𝑃 𝑐𝑖 = 1|𝑟𝑖 , 𝑟𝑎𝑛𝑘 𝑖 𝑦 =

𝑞𝑟𝑎𝑛𝑘 𝑖 𝑦 ⋅ [𝑟𝑖 = 1]

Presented 𝒚 𝑞

A 𝑞1

B 𝑞2

C 𝑞3

D 𝑞4

E 𝑞5

F 𝑞6

G 𝑞7

[Richardson et al., 2007] [Chuklin et al., 2015] [Wang et al., 2016] [Joachims et al., 2017]

Estimating the Propensities

• Idea: Randomization to control for relevance
 Swap Interventions

 𝒚

A

B

C

D

E

F

G

x
𝜋0

 𝒚𝑻𝟐

C

B

A

D

E

F

G

Random
swap

E 𝑐1|𝑇1 = 𝑞1 ⋅ 𝐸 𝑟1 = 1 𝑟𝑎𝑛𝑘 𝑑 𝑦 = 1)

E 𝑐3|𝑇2 = 𝑞3 ⋅ 𝐸 𝑟1 = 1 𝑟𝑎𝑛𝑘 𝑑 𝑦 = 1)


𝑞1

𝑞𝑘
=
E 𝑐1|𝑇1

E 𝑐𝑘|𝑇2

[Wang et al., 2016; Joachims et al., 2017]

 𝒚𝑻𝟏

A

B

C

D

E

F

G
0.50.5

Real-World Experiment

• Arxiv Full-Text Search
– Run Swap(1,r) experiment to

estimate 𝑞𝑟
– Collect training clicks using

production ranker

– Train naïve / propensity
SVM-Rank (1000 features)

– A/B tests via interleaving

Conclusions
• Learning to Rank

– from expert ratings

• Pointwise: estimate relevance

• Listwise: ERM to optimize ranking metric

– from user interactions

• Deal with missing relevance labels

• Use IPS to get unbiased ERM objective

• Other Aspects

– Fairness constraints on ranking policy

