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From Evaluation to Learning

Setting: Batch Learning from Bandit Feedback (BLBF)

• Naïve “Model the World” Learning:

– Learn:  𝛿: 𝑥 × 𝑦 → ℜ

– Derive Policy: 

𝜋 𝑦 𝑥 = argmin
𝑦′

 𝛿 𝑥, 𝑦′

• Naïve “Model the Bias” Learning:
– Find policy that optimizes IPS training error

𝜋 = argmin
𝜋′

 

𝑖

𝜋′ 𝑦𝑖 𝑥𝑖)

𝜋0 𝑦𝑖 𝑥𝑖
𝛿𝑖

Partial-Information ERM

• Setup

– Log using stochastic 𝜋0

S = 𝑥1, 𝑦1, 𝛿1 , … , 𝑥𝑛 , 𝑦𝑛, 𝛿𝑛

– Learn new policy 𝜋 ∈ 𝐻

• Training

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

 𝜋 ≔ argmax𝜋∈𝐻  

𝑖=1

𝑛
𝜋 𝑦𝑖 𝑥𝑖

𝜋0 𝑦𝑖 𝑥𝑖
𝛿𝑖

𝜋0(𝑌|𝑥)
𝜋1(𝑌|𝑥)

𝜋0(𝑌|𝑥)
𝜋237(𝑌|𝑥)

Learning Theory for BLBF

Theorem [Generalization Error Bound]

For any policy space 𝐻 with capacity 𝐶, and for all 𝜋 ∈ 𝐻 with 
probability 1 − 𝜂

 Bound accounts for the fact that variance of risk 
estimator can vary greatly between different  𝜋 ∈ H

U 𝜋 ≥  𝑈 𝜋 − 𝑂
 𝑉𝑎𝑟  𝑈 𝜋

𝑛
− 𝑂(𝐶)

[Swaminathan & Joachims, 2015]
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Overfitting

Counterfactual Risk Minimization

Constructive principle for learning algorithms

Maximize learning theoretical bound

[Swaminathan & Joachims, 2015]

𝜋𝑐𝑟𝑚 = argmax
𝜋∈𝐻

 𝑈 𝜋 − 𝜆1
 𝑉𝑎𝑟  𝑈 𝜋 /𝑛 − 𝜆2𝐶(𝐻)
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POEM: Policy Space

Policy space

𝜋𝑤 𝑦 𝑥 =
1

𝑍(𝑥)
exp 𝑤 ⋅ Φ 𝑥, 𝑦

with

– 𝑤: parameter vector to be learned

– Φ 𝑥, 𝑦 : joint feature map between input and output

– Z(x): partition function (i.e. normalizer)

Note: same form as CRF or Structural SVM
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POEM: Learning Method

Policy Optimizer for Exponential Models (POEM)

– Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛 , 𝑦𝑛, 𝛿𝑛 , 𝑝𝑛

– Policy space: 𝜋𝑤 𝑦 𝑥 = exp 𝑤 ⋅ 𝜙 𝑥, 𝑦 /𝑍(𝑥)

[Swaminathan & Joachims, 2015]

𝑤 = argmax
𝑤∈ℜ𝑁

 𝑈 𝜋𝑤 − 𝜆1
 𝑉𝑎𝑟  𝑈 𝜋𝑤 − 𝜆2 𝑤
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POEM: Text Classification

Data: Reuters Text Classification

– 𝑆∗ = 𝑥1, 𝑦1
∗ , … , 𝑥𝑚 , 𝑦𝑚

∗

– Label vectors 𝑦∗ = (𝑦1, 𝑦2, 𝑦3, 𝑦4)

Results: 

Bandit feedback generation:

– Draw document 𝑥𝑖

– Pick 𝑦𝑖 via logging policy 𝜋0 𝑌|𝑥𝑖

– Observe loss 𝛿𝑖 = Hamming(𝑦i, 𝑦𝑖
∗)

 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛

[Joachims et al., 2017]

𝑦𝑖 = 1,0,1,0
𝑝𝑖 = 0.3

𝜋0
𝛿𝑖 = 2

Learning from Logged 

Interventions

Every time a system places an ad, 

presents a search ranking, or makes 

a recommendation, we can think 

about this as an intervention for 

which we can observe the user's 

response (e.g. click, dwell time, 

purchase). Such logged 

intervention data is actually one of 

the most plentiful types of data 

available, as it can be recorded 

from a variety of
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BanditNet: Policy Space

Policy space

𝜋𝑤 𝑦 𝑥 =
1

𝑍(𝑥)
exp 𝐷𝑒𝑒𝑝𝑁𝑒𝑡(𝑥, 𝑦|𝑤)

with

– 𝑤: parameter tensors to be learned

– Z(x): partition function

Note: same form as Deep Net with softmax output

[Joachims et al., 2017]

BanditNet: Learning Method

• Deep networks with bandit feedback (BanditNet):

– Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛 , 𝑦𝑛, 𝛿𝑛 , 𝑝𝑛

– Hypotheses: 𝜋𝑤 𝑦 𝑥 = exp 𝐷𝑒𝑒𝑝𝑁𝑒𝑡 𝑥|𝑤 /𝑍(𝑥)

[Joachims et al., 2018]

𝑤 = argmax
𝑤∈ℜ𝑁

 𝑈 𝜋𝑤 − 𝜆1
 𝑉𝑎𝑟  𝑈 𝜋𝑤 − 𝜆2 𝑤
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BanditNet: Object Recognition

• Data: CIFAR-10

– 𝑆∗ = 𝑥1, 𝑦1
∗ , … , 𝑥𝑚 , 𝑦𝑚

∗

– ResNet20 [He et al., 2016]

• Results

• Bandit feedback generation:

– Draw image 𝑥𝑖

– Pick 𝑦𝑖 via  logging policy 𝜋0 𝑌|𝑥𝑖

– Observe loss 𝛿𝑖 = 𝑦𝑖 ≠ 𝑦𝑖
∗

 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛

[Beygelzimer & Langford, 2009] [Joachims et al., 2017]

𝑦𝑖 = dog
𝑝𝑖 = 0.3

𝜋0
𝛿𝑖 = 1


