
1

Counterfactual Model for Learning 2

CS6780 – Advanced Machine Learning

Spring 2019

Thorsten Joachims

Cornell University

Reading:

G. Imbens, D. Rubin, Causal Inference for Statistics …, 2015. Chapters 1,3,12.

From Evaluation to Learning

Setting: Batch Learning from Bandit Feedback (BLBF)

• Naïve “Model the World” Learning:

– Learn: 𝛿: 𝑥 × 𝑦 → ℜ

– Derive Policy:

𝜋 𝑦 𝑥 = argmin
𝑦′

 𝛿 𝑥, 𝑦′

• Naïve “Model the Bias” Learning:
– Find policy that optimizes IPS training error

𝜋 = argmin
𝜋′

𝑖

𝜋′ 𝑦𝑖 𝑥𝑖)

𝜋0 𝑦𝑖 𝑥𝑖
𝛿𝑖

Partial-Information ERM

• Setup

– Log using stochastic 𝜋0

S = 𝑥1, 𝑦1, 𝛿1 , … , 𝑥𝑛 , 𝑦𝑛, 𝛿𝑛

– Learn new policy 𝜋 ∈ 𝐻

• Training

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

 𝜋 ≔ argmax𝜋∈𝐻

𝑖=1

𝑛
𝜋 𝑦𝑖 𝑥𝑖

𝜋0 𝑦𝑖 𝑥𝑖
𝛿𝑖

𝜋0(𝑌|𝑥)
𝜋1(𝑌|𝑥)

𝜋0(𝑌|𝑥)
𝜋237(𝑌|𝑥)

Learning Theory for BLBF

Theorem [Generalization Error Bound]

For any policy space 𝐻 with capacity 𝐶, and for all 𝜋 ∈ 𝐻 with
probability 1 − 𝜂

 Bound accounts for the fact that variance of risk
estimator can vary greatly between different 𝜋 ∈ H

U 𝜋 ≥ 𝑈 𝜋 − 𝑂
 𝑉𝑎𝑟 𝑈 𝜋

𝑛
− 𝑂(𝐶)

[Swaminathan & Joachims, 2015]

Unbiased
Estimator

Variance
Overfitting

Capacity
Overfitting

Counterfactual Risk Minimization

Constructive principle for learning algorithms

Maximize learning theoretical bound

[Swaminathan & Joachims, 2015]

𝜋𝑐𝑟𝑚 = argmax
𝜋∈𝐻

 𝑈 𝜋 − 𝜆1
 𝑉𝑎𝑟 𝑈 𝜋 /𝑛 − 𝜆2𝐶(𝐻)

Capacity
Regularization

Variance
Regularization

Training
Error/Utility (IPS)

POEM: Policy Space

Policy space

𝜋𝑤 𝑦 𝑥 =
1

𝑍(𝑥)
exp 𝑤 ⋅ Φ 𝑥, 𝑦

with

– 𝑤: parameter vector to be learned

– Φ 𝑥, 𝑦 : joint feature map between input and output

– Z(x): partition function (i.e. normalizer)

Note: same form as CRF or Structural SVM

2

POEM: Learning Method

Policy Optimizer for Exponential Models (POEM)

– Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛 , 𝑦𝑛, 𝛿𝑛 , 𝑝𝑛

– Policy space: 𝜋𝑤 𝑦 𝑥 = exp 𝑤 ⋅ 𝜙 𝑥, 𝑦 /𝑍(𝑥)

[Swaminathan & Joachims, 2015]

𝑤 = argmax
𝑤∈ℜ𝑁

 𝑈 𝜋𝑤 − 𝜆1
 𝑉𝑎𝑟 𝑈 𝜋𝑤 − 𝜆2 𝑤

2

Capacity
Regularization

Variance
Regularization

IPS Estimator

POEM: Text Classification

Data: Reuters Text Classification

– 𝑆∗ = 𝑥1, 𝑦1
∗ , … , 𝑥𝑚 , 𝑦𝑚

∗

– Label vectors 𝑦∗ = (𝑦1, 𝑦2, 𝑦3, 𝑦4)

Results:

Bandit feedback generation:

– Draw document 𝑥𝑖

– Pick 𝑦𝑖 via logging policy 𝜋0 𝑌|𝑥𝑖

– Observe loss 𝛿𝑖 = Hamming(𝑦i, 𝑦𝑖
∗)

 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛

[Joachims et al., 2017]

𝑦𝑖 = 1,0,1,0
𝑝𝑖 = 0.3

𝜋0
𝛿𝑖 = 2

Learning from Logged

Interventions

Every time a system places an ad,

presents a search ranking, or makes

a recommendation, we can think

about this as an intervention for

which we can observe the user's

response (e.g. click, dwell time,

purchase). Such logged

intervention data is actually one of

the most plentiful types of data

available, as it can be recorded

from a variety of

𝑥𝑖

0.28

0.33

0.38

0.43

0.48

0.53

0.58

1 2 4 8 16 32 64 128

H
am

m
in

g
Lo

ss

Amount of bandit training data (in epochs)

f0 (log data)

CoStA

CRF(supervised)

𝜋0 logging policy

POEM

CRF (supervised)

BanditNet: Policy Space

Policy space

𝜋𝑤 𝑦 𝑥 =
1

𝑍(𝑥)
exp 𝐷𝑒𝑒𝑝𝑁𝑒𝑡(𝑥, 𝑦|𝑤)

with

– 𝑤: parameter tensors to be learned

– Z(x): partition function

Note: same form as Deep Net with softmax output

[Joachims et al., 2017]

BanditNet: Learning Method

• Deep networks with bandit feedback (BanditNet):

– Data: 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛 , 𝑦𝑛, 𝛿𝑛 , 𝑝𝑛

– Hypotheses: 𝜋𝑤 𝑦 𝑥 = exp 𝐷𝑒𝑒𝑝𝑁𝑒𝑡 𝑥|𝑤 /𝑍(𝑥)

[Joachims et al., 2018]

𝑤 = argmax
𝑤∈ℜ𝑁

 𝑈 𝜋𝑤 − 𝜆1
 𝑉𝑎𝑟 𝑈 𝜋𝑤 − 𝜆2 𝑤

2

Capacity
Regularization

Variance
Regularization

Self-Normalized
IPS Estimator

BanditNet: Object Recognition

• Data: CIFAR-10

– 𝑆∗ = 𝑥1, 𝑦1
∗ , … , 𝑥𝑚 , 𝑦𝑚

∗

– ResNet20 [He et al., 2016]

• Results

• Bandit feedback generation:

– Draw image 𝑥𝑖

– Pick 𝑦𝑖 via logging policy 𝜋0 𝑌|𝑥𝑖

– Observe loss 𝛿𝑖 = 𝑦𝑖 ≠ 𝑦𝑖
∗

 𝑆 = 𝑥1, 𝑦1, 𝛿1, 𝑝1 , … , 𝑥𝑛, 𝑦𝑛, 𝛿𝑛, 𝑝𝑛

[Beygelzimer & Langford, 2009] [Joachims et al., 2017]

𝑦𝑖 = dog
𝑝𝑖 = 0.3

𝜋0
𝛿𝑖 = 1

