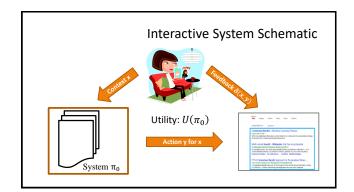
Counterfactual Model for Learning

CS6780 – Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

> > Reading:

G. Imbens, D. Rubin, Causal Inference for Statistics ..., 2015. Chapters 1,3,12.



News Recommender

- Context x:
 - User
- Action y:
- Portfolio of newsarticles
- Feedback $\delta(x,y)$:
 - Reading time in minutes

Ad Placement

- Context x:
- User and page
- Action y:
- Ad that is placed
- Feedback $\delta(x,y)$:
 - Click / no-click

Search Engine

- Context x:
 - Query
- Action y:
 - Ranking
- Feedback $\delta(x,y)$:
 - Click / no-click

Log Data from Interactive Systems

• Data $S = ((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n))$

- → Partial Information (aka "Contextual Bandit") Feedback
- Properties
 - Contexts x_i drawn i.i.d. from unknown P(X)
 - Actions y_i selected by existing system $\pi_0: X \to Y$
 - $\quad \text{Feedback } \delta_i \text{ from unknown function } \delta \text{:} X \times Y \to \Re$

[Zadrozny et al., 2003] [Langford & Li], [Bottou, et al., 2014]

Goal

Use interaction log data

$$S = \left((x_1, y_1, \delta_1), \dots, (x_n, y_n, \delta_n)\right)$$

- for evaluation of system π
 - Offline estimate of online performace of some system π .
 - System π can be different from π_0 that generated log.
- for learning new system $\boldsymbol{\pi}$

Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Online Performance Metrics

Example metrics

- CTR
- Revenue
- Time-to-success
- Interleaving
- Etc.
- → Correct choice depends on application and is not the focus of this lecture.

This lecture:

Metric encoded as $\delta(x, y)$ [click/payoff/time for (x,y) pair]

Definition [Deterministic Policy]:

Function

 $y = \pi(x)$

that picks action y for context x.

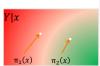
Definition [Stochastic Policy]:

Distribution

 $\pi(y|x)$

that samples action y given context x

System



System Performance

Definition [Utility of Policy]:

The expected reward / utility $\mathrm{U}(\pi)$ of policy π is

$$U(\pi) = \int \int \delta(x, y) \pi(y|x) P(x) dx dy$$

Online Evaluation: A/B Testing

Given $S=\left((x_1,y_1,\delta_1),...,(x_n,y_n,\delta_n)\right)$ collected under π_0 , $\widehat{U}(\pi_0)=\frac{1}{n}\sum_{i=1}^n\delta_i$

→ A/B Testing

Deploy π_1 : Draw $x \sim P(X)$, predict $y \sim \pi_1(Y|x)$, get $\delta(x,y)$ Deploy π_2 : Draw $x \sim P(X)$, predict $y \sim \pi_2(Y|x)$, get $\delta(x,y)$

Deploy $\pi_{|H|}$: Draw $x \sim P(X)$, predict $y \sim \pi_{|H|}(Y|x)$, get $\delta(x,y)$

Pros and Cons of A/B Testing

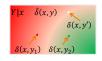
- Pro
- User centric measure
- No need for manual ratings
- No user/expert mismatch
- Cons
 - Requires interactive experimental control
 - Risk of fielding a bad or buggy π_i
 - Number of A/B Tests limited
 - Long turnaround time

Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
 - Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach 1: Reward Predictor

- Idea
- $\begin{array}{l} \text{ Use } S = \left((x_1, y_1, \delta_1), \ldots, (x_n, y_n, \delta_n)\right) \text{ from } \\ \pi_0 \text{ to estimate reward predictor } \hat{\delta}(x, y) \end{array}$

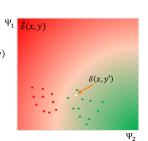


- Deterministic π : Simulated A/B Testing with predicted $\hat{\delta}(x,y)$
 - For actions $y_i' = \pi(x_i)$ from new policy π , generate predicted $\log S' = \left(\left(x_1, y_1', \delta(x_1, y_1')\right), ..., \left(x_n, y_n', \delta(x_n, y_n')\right)\right)$
 - Estimate performace of π via $\widehat{U}_{rp}(\pi)=rac{1}{n}\sum_{i=1}^{n}\widehat{\delta}(x_i,y_i')$
- Stochastic π : $\widehat{U}_{rp}(\pi) = \frac{1}{n} \sum_{i=1}^{n} \sum_{y} \widehat{\delta}(x_i, y) \pi(y|x_i)$

Regression for Reward Prediction

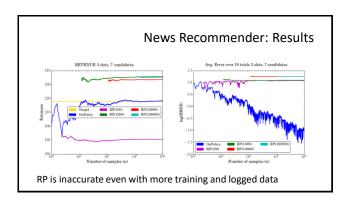
Learn $\hat{\delta}$: $x \times y \to \Re$

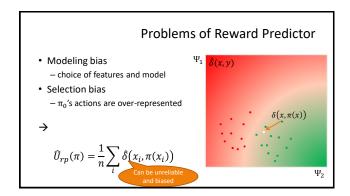
- 1. Represent via features $\Psi(x,y)$
- 2. Learn regression based on $\Psi(x,y)$ from S collected under π_0
- 3. Predict $\hat{\delta}(x, y')$ for $y' = \pi(x)$ of new policy π



News Recommender: Exp Setup

- Context x: User profile
- Action y: Ranking
 Pick from 7 candidates
 to place into 3 slots
- Reward δ : "Satisfaction" — Complicated hidden function
- What's to Bisses for Rolling at Donald Thomas Ballers' Donald Ballers' Donald
- Logging policy π_0 : Non-uniform randomized logging system
 - Placket-Luce "explore around current production ranker"





Evaluation: Outline

- Offline Evaluating of Online Metrics
 - A/B Testing (on-policy)
 - → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Imputation via reward prediction
- Approach 2: "Model the bias"
 - Counterfactual model and selection bias
 - Inverse propensity scoring (IPS) estimator

Approach "Model the Bias"

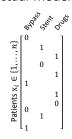
• Idea:

Fix the mismatch between the distribution $\pi_0(Y|x)$ that generated the data and the distribution $\pi(Y|x)$ we aim to evaluate.

$$U(\pi_0) = \int \int \delta(x, y) \underline{\pi}_0(y|x) P(x) dx dy$$

Counterfactual Model

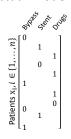
- Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient \mathbf{x}_i : \mathbf{y}_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?



Counterfactual Model Placing Vertical Example: Treating Heart Attacks — Treatments: Y • Bypass/Stent/Drugs — Pos 1/Pos 2/Pos 3 — Chosen treatment for patient x_i : y_i — Outcomes: δ_i • 5-year survival: 0/1— Which treatment is best?

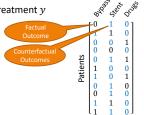
Counterfactual Model

- Example: Treating Heart Attacks
 - Treatments: Y
 - Bypass / Stent / Drugs
 - Chosen treatment for patient x_i: y_i
 - Outcomes: δ_i
 - 5-year survival: 0 / 1
 - Which treatment is best?
 - Everybody Drugs
 - · Everybody Stent
 - Everybody Bypass
 - → Drugs 3/4, Stent 2/3, Bypass 2/4 really?



Treatment Effects

- Average Treatment Effect of Treatment y
 - $-U(y) = \frac{1}{n} \sum_{i} \delta(x_i, y)$
- Example
 - $-U(bypass) = \frac{4}{11}$
 - $-U(stent) = \frac{6}{11}$
 - $-U(drugs) = \frac{3}{11}$



Assignment Mechanism

- Probabilistic Treatment Assignment
 - For patient i: $\pi_0(Y_i = y|x_i)$
- Selection Bias
- Inverse Propensity Score Estimator

$$\begin{split} & - \quad \widehat{U}_{ips}(y) = \frac{1}{n} \sum_{i} \frac{\mathbb{I}\{y_i = y\}}{p_i} \delta(x_i, y_i) \\ & - \text{ Propensity: } \mathbf{p}_i = \pi_0(Y_i = y_i | x_i) \end{split}$$

- Unbiased: $E[\widehat{U}(y)] = U(y)$, if $\pi_0(Y_i = y|x_i) > 0$ for all i
- Example
 - $-\widehat{U}(drugs) = \frac{1}{11} \left(\frac{1}{0.8} + \frac{1}{0.7} + \frac{1}{0.8} + \frac{0}{0.1} \right)$ = 0.36 < 0.75

$\pi_0(Y_i = y x_i)$				840	s's ser	Origi	3
0.3	0.6	0.1	1	٥ ٦	1	0 7	l
0.5	0.4	0.1		1	1	0	
0.1	0.1	0.8		0	0	1	
0.6	0.3	0.1		0	0	0	
0.2	0.5	0.7	Patients	0	1	1	
0.7	0.2	0.1	.ē.	1	0	0	
0.1	0.1	0.8	at	1	0	1	
0.1	8.0	0.1	~	0	1	0	
0.3	0.3	0.4		0	1	0	
0.3	0.6	0.1		1	1	0	
0.4	0.4	0.2	J	l ₁	1	0 -	

Experimental vs Observational

- · Controlled Experiment
 - Assignment Mechanism under our control
 - Propensities $p_i = \pi_0(Y_i = y_i | x_i)$ are known by design
 - Requirement: $\forall y : \pi_0(Y_i = y | x_i) > 0$ (probabilistic)
- · Observational Study
 - Assignment Mechanism not under our control
 - Propensities p_i need to be estimated
 - Estimate $\hat{\pi}_0(Y_i|z_i) = \pi_0(Y_i|x_i)$ based on features z_i
 - Requirement: $\hat{\pi}_0(Y_i|z_i) = \hat{\pi}_0(Y_i|\delta_i,z_i)$ (unconfounded)

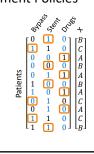
Conditional Treatment Policies

- · Policy (deterministic)
 - Context x_i describing patient
 - Pick treatment y_i based on x_i : $\mathbf{y_i} = \pi(x_i)$
- Example policy:
- $\pi(A) = drugs, \pi(B) = stent, \pi(C) = bypass$
- Average Treatment Effect

$$-U(\pi) = \frac{1}{n} \sum_{i} \delta(x_i, \pi(x_i))$$

IPS Estimator

$$- \quad \widehat{U}_{ips}(\pi) = \frac{1}{n} \sum_i \frac{\mathbb{I}\{y_i = \pi(x_i)\}}{p_i} \delta(x_i, y_i)$$



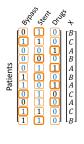
Stochastic Treatment Policies

- · Policy (stochastic)
 - Context x_i describing patient
 - Pick treatment y based on x_i : $\pi(Y|x_i)$
- - Assignment Mechanism is a stochastic policy as well!
- Average Treatment Effect

$$-U(\pi) = \frac{1}{n} \sum_{i} \sum_{y} \delta(x_i, y) \pi(y | x_i)$$

IPS Estimator

$$-\widehat{U}(\pi) = \frac{1}{n} \sum_{i} \frac{\pi(y_i | x_i)}{p_i} \delta(x_i, y_i)$$

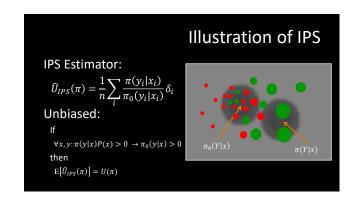


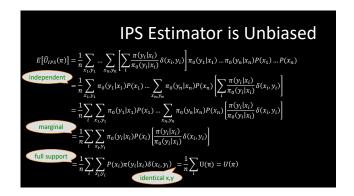
Evaluation: Outline

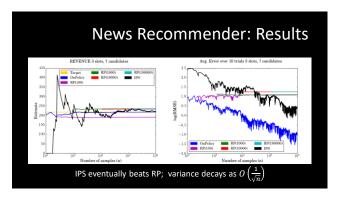
- Evaluating Online Metrics Offline

 - A/B Testing (on-policy)
 → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
- · Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimator

System Evaluation via **Inverse Propensity Score Weighting** Definition [IPS Utility Estimator]: Given $S = \left((x_1,y_1,\delta_1),\ldots,(x_n,y_n,\delta_n)\right)$ collected under π_0 , $\pi(y_i|x_i)$ $n \underset{i=1}{\longleftarrow} \pi_0(y_i|x_i) \xrightarrow{p_i}$ $\Rightarrow \text{ Unbiased estimate of utility for any } \pi, \text{ if propensity nonzero }$ $\text{whenever } \pi(y_i|x_i) > 0.$ Note: If $\pi=\pi_0$, then online A/B Test with $\widehat{U}_{ips}(\pi_0)=$ → Off-policy vs. On-policy estimation.







Counterfactual Policy Evaluation

- $\begin{array}{ll} \bullet & \text{Controlled Experiment Setting:} \\ & \log \operatorname{data:} D = \left((x_1,y_1,\delta_1,p_1),...,(x_n,y_n,\delta_n,p_n)\right) \\ \bullet & \text{Observational Setting:} \end{array}$
- - Log data: $D=\left((x_1,y_1,\delta_1,z_1),...,(x_n,y_n,\delta_n,z_n)\right)$ Estimate propensities: $p_i=P(y_i|x_i,z_i)$ based on x_i and other confounders z_i
- \rightarrow Goal: Estimate average treatment effect of new policy π .
 - IPS Estimator

$$\widehat{U}(\pi) = \frac{1}{n} \sum_{i} \delta_{i} \frac{\pi(y_{i}|x_{i})}{p_{i}}$$

or many others.

Evaluation: Summary

- Offline Evaluation of Online Metrics

 - A/B Testing (on-policy)

 → Counterfactual estimation from logs (off-policy)
- Approach 1: "Model the world"
 - Estimation via reward prediction
 - Pro: low variance
 - Con: model mismatch can lead to high bias
- Approach 2: "Model the bias"
 - Counterfactual Model
 - Inverse propensity scoring (IPS) estimatorPro: unbiased for known propensities

 - Con: large variance

From Evaluation to Learning

- Naïve "Model the World" Learning:
 - Learn: $\hat{\delta}$: $x \times y \rightarrow \Re$
 - Derive Policy:

$$\pi(y|x) = \underset{y'}{\operatorname{argmin}} \left[\hat{\delta}(x, y') \right]$$

- Naïve "Model the Bias" Learning:
 - Find policy that optimizes IPS training error

$$\pi = \underset{\pi'}{\operatorname{argmin}} \left[\sum_{i} \frac{\pi'(y_i|x_i)}{\pi_0(y_i|x_i)} \delta_i \right]$$