Latent Variable Models

CS6780 – Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

Reading: Murphy 11.1 – 11.4.2 and 11.4.7

Clustering as Mixture Modeling

- Setup
 - Learning Task: P(X)
 - Training Sample: $S = (\vec{x}_1, ..., \vec{x}_n)$
 - Hypothesis Space: $H = \{h_1, \dots, h_{|H|}\}$
 - each describes $P(X|h_i)$ where h_i are parameters
 - Goal: learn which $P(X|h_i)$ produces the data
- What to predict?
 - Predict where new points are going to fall

Mixture of Gaussians

Gaussian Mixture Model (GMM):

The data X is generated by

$$P(X = \vec{x}|h) = \sum_{i=1}^{k} P(X = \vec{x}|Y = j, h)P(Y = j)$$

where each mixture component

$$P(X = \vec{x}|Y = j, h) = N(X = \vec{x}|\vec{\mu}_i, \Sigma_i)$$

and $h = (\vec{\mu}_1, \Sigma_1, ..., \vec{\mu}_k, \Sigma_k)$.

EM Algorithm for GMM

- EM Algorithm for (simplified) GMM
 - Assume P(Y) and k known and $\Sigma_i = 1$.
 - REPEAT

•
$$P(Y = j | X = \vec{x}_i, \vec{\mu}_1, ..., \vec{\mu}_k) = \frac{P(X = \vec{x}_i | Y = j, \vec{\mu}_j) P(Y = j)}{\sum_{l=1}^k P(X = \vec{x}_i | Y = l, \vec{\mu}_l) P(Y = l)} =$$

$$\frac{\mathrm{e}^{-0.5\left(\vec{x}_{i} - \vec{\mu}_{j}\right)^{2}} P(Y = j)}{\sum_{l=1}^{k} e^{-0.5\left(\vec{x}_{i} - \vec{\mu}_{l}\right)^{2}} P(Y = l)}$$

•
$$\vec{\mu}_j = \frac{\sum_{i=1}^n P(Y = j | X = \vec{x}_i, \vec{\mu}_1, \dots, \vec{\mu}_k) \vec{x}_i}{\sum_{i=1}^n P(Y = j | X = \vec{x}_i, \vec{\mu}_1, \dots, \vec{\mu}_k)}$$

Mixture of "X"

General Mixture Model:

The data X is generated by

$$P(X = \vec{x}|h) = \sum_{j=1}^{k} P(X = \vec{x}|Y = j, h) P(Y = j)$$

where each mixture component $P(X = \vec{x}|Y = j, h)$ is

- Gaussian: $N(X = \vec{x} | \vec{\mu}_i, \Sigma_i)$ [real vectors]
- Independent Bernoullis: Ber $(X = \vec{x} | \vec{\mu}_i)$ [bitvectors]
- Independent Poisson: Poisson $(X = \vec{x} | \vec{\mu}_j)$ [counts]
- Multinomial: Mul $\left(X=\vec{x}|\vec{\mu}_{j},l\right)$ [counts] and h collects the respective parameters.

Latent Variable Models

- Data: $(x_1, z_1), ..., (x_n, z_n)$ where
 - $-x_i$ are observed and
 - $-z_i$ are unobserved (i.e. latent) (the y_i in mixture).
- Approach: Maximum likelihood (or MAP) by marginalizing over the z_i

$$l(h) = \sum_{i=1}^{n} \log P(x_i|h) = \sum_{i=1}^{n} \log \left[\sum_{z_i} P(x_i, z_i|h) \right]$$

General EM Algorithm

Data: (x₁, z₁), ..., (x_n, z_n)
Auxiliary Function:

$$Q(h|q) = \sum_i E_{z_i \sim q_i} [\log P(x_i, z_i|h)] + Ent(q_i)$$

· Algorithm:

- E-Step: Compute distribution q_i^t of each z_i based on current h^t

– M-Step: Maximize $Q(h|q^t)$ to get h^{t+1}

• Convergence:

$$l(h^{t+1}) \ge Q(h^{t+1}|q^t) \ge Q(h^t|q^t) = l(h^t)$$

General EM for Mixture Models

• Model:

$$-P(X = x | h) = \sum_{j=1}^{k} P(X = x | Y = j, h) P(Y = j)$$

– Component distributions $P(X = \vec{x}|Y = j, h)$

Algorithm

- REPEAT

• E-Step: $P(Y = j | h) = \frac{P(X = \vec{x_i} | Y = j, h)P(Y = j)}{\sum_{l=1}^{k} P(X = \vec{x_l} | Y = l, h)P(Y = l)}$

M-Step: Optimize Q with respect to h

Beyond Mixture Models

- · Latent Variable Models for
 - Missing feature imputation (missing features)
 - Semi-supervised learning (missing labels)
 - Censored regression (mortality analysis)
 - Hidden Markov models with unobserved states (speech recognition)
 - Matrix factorization (recommender systems)