Latent Variable Models

CS6780 – Advanced Machine Learning Spring 2019

Thorsten Joachims Cornell University

Reading: Murphy 11.1 – 11.4.2 and 11.4.7

Clustering as Mixture Modeling

• Setup

- Learning Task: P(X)
- Training Sample: $S = (\vec{x}_1, ..., \vec{x}_n)$
- Hypothesis Space: $H = \{h_1, ..., h_{|H|}\}$
 - each describes $P(X|h_i)$ where h_i are parameters
- Goal: learn which $P(X|h_i)$ produces the data
- What to predict?

Predict where new points are going to fall

Mixture of Gaussians

Gaussian Mixture Model (GMM):

The data X is generated by

$$P(X = \vec{x}|h) = \sum_{j=1}^{k} P(X = \vec{x}|Y = j, h) P(Y = j)$$

where each mixture component

$$P(X = \vec{x} | Y = j, h) = N(X = \vec{x} | \vec{\mu}_j, \Sigma_j)$$

and $h = (\vec{\mu}_1, \Sigma_1, \dots, \vec{\mu}_k, \Sigma_k)$.

EM Algorithm for GMM

- EM Algorithm for (simplified) GMM
 - Assume P(Y) and k known and $\Sigma_i = 1$.

- REPEAT

•
$$P(Y = j | X = \vec{x}_i, \vec{\mu}_1, ..., \vec{\mu}_k) = \frac{P(X = \vec{x}_i | Y = j, \vec{\mu}_j) P(Y = j)}{\sum_{l=1}^k P(X = \vec{x}_i | Y = l, \vec{\mu}_l) P(Y = l)} = \frac{e^{-0.5(\vec{x}_i - \vec{\mu}_j)^2} P(Y = j)}{\sum_{l=1}^k e^{-0.5(\vec{x}_i - \vec{\mu}_l)^2} P(Y = l)}$$

• $\vec{\mu}_j = \frac{\sum_{i=1}^n P(Y = j | X = \vec{x}_i, \vec{\mu}_1, ..., \vec{\mu}_k) \vec{x}_i}{\sum_{i=1}^n P(Y = j | X = \vec{x}_i, \vec{\mu}_1, ..., \vec{\mu}_k)}$

Mixture of "X"

General Mixture Model:

The data X is generated by

$$P(X = \vec{x}|h) = \sum_{j=1}^{k} P(X = \vec{x}|Y = j, h) P(Y = j)$$

where each mixture component $P(X = \vec{x} | Y = j, h)$ is

- Gaussian: $N(X = \vec{x} | \vec{\mu}_j, \Sigma_j)$ [real vectors]
- Independent Bernoullis: Ber $(X = \vec{x} | \vec{\mu}_j)$ [bitvectors]
- Independent Poisson: Poisson $(X = \vec{x} | \vec{\mu}_j)$ [counts]
- Multinomial: Mul $(X = \vec{x} | \vec{\mu}_j, l)$ [counts]

and h collects the respective parameters.

Latent Variable Models

- Data: (x₁, z₁), ..., (x_n, z_n) where
 x_i are observed and
 z_i are unobserved (i.e. latent) (the y_i in mixture).
- Approach: Maximum likelihood (or MAP) by marginalizing over the z_i

$$l(h) = \sum_{i=1}^{n} \log P(x_i|h) = \sum_{i=1}^{n} \log \left[\sum_{z_i} P(x_i, z_i|h) \right]$$

General EM Algorithm

- Data: $(x_1, z_1), \dots, (x_n, z_n)$
- Auxiliary Function:

$$Q(h|q) = \sum_{i} E_{z_i \sim q_i} \left[\log P(x_i, z_i|h) \right] + Ent(q_i)$$

- Algorithm:
 - E-Step: Compute distribution q_i^t of each z_i based on current h^t
 - M-Step: Maximize $Q(h|q^t)$ to get h^{t+1}
- Convergence:

 $l(h^{t+1}) \ge Q(h^{t+1}|q^t) \ge Q(h^t|q^t) = l(h^t)$

General EM for Mixture Models

• Model:

$$-P(X = x|h) = \sum_{j=1}^{k} P(X = x|Y = j, h) P(Y = j)$$

- Component distributions $P(X = \vec{x} | Y = j, h)$

- Algorithm
 - REPEAT

• E-Step:
$$P(Y = j|h) = \frac{P(X = \vec{x}_i|Y = j,h)P(Y = j)}{\sum_{l=1}^k P(X = \vec{x}_i|Y = l,h)P(Y = l)}$$

• M-Step: Optimize Q with respect to h

Beyond Mixture Models

- Latent Variable Models for
 - Missing feature imputation (missing features)
 - Semi-supervised learning (missing labels)
 - Censored regression (mortality analysis)
 - Hidden Markov models with unobserved states (speech recognition)
 - Matrix factorization (recommender systems)