Latent Variable Models

CS6780 - Advanced Machine Learning Spring 2019

Thorsten Joachims
Cornell University

Reading: Murphy 11.1-11.4.2 and 11.4.7

Clustering as Mixture Modeling

- Setup
- Learning Task: $P(X)$
- Training Sample: $S=\left(\vec{x}_{1}, \ldots, \vec{x}_{n}\right)$
- Hypothesis Space: $H=\left\{h_{1}, \ldots, h_{|H|}\right\}$
- each describes $P\left(X \mid h_{i}\right)$ where h_{i} are parameters
- Goal: learn which $P\left(X \mid h_{i}\right)$ produces the data
- What to predict?
- Predict where new points are going to fall

Mixture of Gaussians

Gaussian Mixture Model (GMM):

The data X is generated by

$$
P(X=\vec{x} \mid h)=\sum_{j=1}^{k} P(X=\vec{x} \mid Y=j, h) P(Y=j)
$$

where each mixture component

$$
P(X=\vec{x} \mid Y=j, h)=N\left(X=\vec{x} \mid \vec{\mu}_{j}, \Sigma_{j}\right)
$$

and $h=\left(\vec{\mu}_{1}, \Sigma_{1}, \ldots, \vec{\mu}_{k}, \Sigma_{k}\right)$.

EM Algorithm for GMM

- EM Algorithm for (simplified) GMM
- Assume $P(Y)$ and k known and $\Sigma_{i}=1$.
- REPEAT

$$
\begin{aligned}
& \text { - } P\left(Y=j \mid X=\vec{x}_{i}, \vec{\mu}_{1}, \ldots, \vec{\mu}_{k}\right)=\frac{P\left(X=\vec{x}_{i} \mid Y=j, \vec{\mu}_{j}\right) P(Y=j)}{\sum_{l=1}^{k} P\left(X=\vec{x}_{i} \mid Y=l, \vec{\mu}_{l}\right) P(Y=l)}= \\
& \frac{\mathrm{e}^{-0.5\left(\vec{x}_{i}-\vec{\mu}_{j}\right)^{2}} P(Y=j)}{\sum_{l=1}^{k} e^{-0.5\left(\vec{x}_{i}-\vec{\mu}_{l}\right)^{2}} P(Y=l)} \\
& \text { - } \vec{\mu}_{j}=\frac{\sum_{i=1}^{n} P\left(Y=j \mid X=\vec{x}_{i}, \vec{\mu}_{1}, \ldots, \vec{\mu}_{k}\right) \vec{x}_{i}}{\sum_{i=1}^{n} P\left(Y=j \mid X=\vec{x}_{i}, \vec{\mu}_{1}, \ldots, \vec{\mu}_{k}\right)}
\end{aligned}
$$

Mixture of "X"

General Mixture Model:
The data X is generated by

$$
P(X=\vec{x} \mid h)=\sum_{j=1}^{k} P(X=\vec{x} \mid Y=j, h) P(Y=j)
$$

where each mixture component $P(X=\vec{x} \mid Y=j, h)$ is

- Gaussian: $N\left(X=\vec{x} \mid \vec{\mu}_{j}, \Sigma_{j}\right)$ [real vectors]
- Independent Bernoullis: $\operatorname{Ber}\left(X=\vec{x} \mid \vec{\mu}_{j}\right)$ [bitvectors]
- Independent Poisson: Poisson $\left(X=\vec{x} \mid \vec{\mu}_{j}\right)$ [counts]
- Multinomial: $\operatorname{Mul}\left(X=\vec{x} \mid \vec{\mu}_{j}, l\right)$ [counts]
and h collects the respective parameters.

Latent Variable Models

- Data: $\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right)$ where
$-x_{i}$ are observed and
$-z_{i}$ are unobserved (i.e. latent) (the y_{i} in mixture).
- Approach: Maximum likelihood (or MAP) by marginalizing over the z_{i}
$l(h)=\sum_{i=1}^{n} \log P\left(x_{i} \mid h\right)=\sum_{i=1}^{n} \log \left[\sum_{z_{i}} P\left(x_{i}, z_{i} \mid h\right)\right]$

General EM Algorithm

- Data: $\left(x_{1}, z_{1}\right), \ldots,\left(x_{n}, z_{n}\right)$
- Auxiliary Function:

$$
Q(h \mid q)=\sum_{i} E_{z_{i} \sim q_{i}}\left[\log P\left(x_{i}, z_{i} \mid h\right)\right]+\operatorname{Ent}\left(q_{i}\right)
$$

- Algorithm:
- E-Step: Compute distribution q_{i}^{t} of each z_{i} based on current h^{t}
- M-Step: Maximize $Q\left(h \mid q^{t}\right)$ to get h^{t+1}
- Convergence:

$$
l\left(h^{t+1}\right) \geq Q\left(h^{t+1} \mid q^{t}\right) \geq Q\left(h^{t} \mid q^{t}\right)=l\left(h^{t}\right)
$$

General EM for Mixture Models

- Model:

$$
-P(X=x \mid h)=\sum_{j=1}^{k} P(X=x \mid Y=j, h) P(Y=j)
$$

- Component distributions $P(X=\vec{x} \mid Y=j, h)$
- Algorithm
- REPEAT
- E-Step: $P(Y=j \mid h)=\frac{P\left(X=\vec{x}_{i} \mid Y=j, h\right) P(Y=j)}{\sum_{l=1}^{k} P\left(X=\vec{x}_{i} \mid Y=l, h\right) P(Y=l)}$
- M-Step: Optimize Q with respect to h

Beyond Mixture Models

- Latent Variable Models for
- Missing feature imputation (missing features)
- Semi-supervised learning (missing labels)
- Censored regression (mortality analysis)
- Hidden Markov models with unobserved states (speech recognition)
- Matrix factorization (recommender systems)

