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Supervised Learning 
vs. Unsupervised Learning

• Supervised Learning
– Classification: partition examples into groups according to pre-

defined categories
– Regression: assign value to feature vectors
– Requires labeled data for training

• Unsupervised Learning?
– Clustering: partition examples into groups when no pre-defined 

categories/classes are available
– Signal separation: recover components of a mixed signal
– Embeddings: find low dimensional representation of high 

dimensional data 
– Outlier detection: find unusual events (e.g. hackers) 
– Novelty detection: find changes in data
– Only instances required, but no labels



Clustering

• Partition unlabeled examples into disjoint subsets of 
clusters, such that:

– Examples within a cluster are similar

– Examples in different clusters are different

• Discover new categories in an unsupervised manner 
(no sample category labels provided).



Applications of Clustering

• Exploratory data analysis
• Cluster retrieved documents in search engine
• Detecting near duplicates

– Entity resolution
• E.g. “Thorsten Joachims” == “Thorsten B Joachims”

– Cheating detection

• Automated (or semi-automated) creation of 
taxonomies
– E.g. phylogenetic tree

• Compression



Clustering Example



Clustering Example



Clustering Example



Clustering Example



Clustering Example



Similarity (Distance) Measures
• Euclidian distance (L2 norm):

• L1 norm:

• Cosine similarity:

• Kernels
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Hierarchical Clustering

• Build a tree-based hierarchical taxonomy from a 
set of unlabeled examples.

• Recursive application of a standard clustering 
algorithm can produce a hierarchical clustering.
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Agglomerative vs. Divisive 
Clustering

• Agglomerative (bottom-up) methods start with each 
example in its own cluster and iteratively combine 
them to form larger and larger clusters.

• Divisive (top-down) separate all examples 
immediately into clusters.
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Hierarchical Agglomerative 
Clustering (HAC)

• Assumes a similarity function for determining 
the similarity of two clusters.

• Basic algorithm:

• The history of merging forms a binary tree or 
hierarchy.

• Start with all instances in their own cluster.
• Until there is only one cluster:

• Among the current clusters, determine the two 
clusters, ci and cj, that are most similar.

• Replace ci and cj with a single cluster ci  cj



Cluster Similarity

• How to compute similarity of two clusters each 
possibly containing multiple instances?

– Single link: Similarity of two most similar members.

– Complete link: Similarity of two least similar 
members.

– Group average: Average similarity between 
members.



Single-Link HAC
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→ Can result in “straggly” 
(long and thin) clusters 
due to chaining effect.



Complete-Link HAC
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• When computing cluster similarity, use minimum 
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→ Makes more “tight,” 
spherical clusters.



Computational Complexity of HAC

• In the first iteration, all HAC methods need to 
compute similarity of all pairs of n individual 
instances which is O(n2).

• In each of the subsequent O(n) merging 
iterations, 
– must find smallest distance pair of clusters 

Maintain heap O(n2 log n) 
– it must compute the distance between the most 

recently created cluster and each other existing 
cluster. Can this be done in constant time?

 O(n2 log n) overall.



Computing Cluster Similarity

• After merging ci and cj, the similarity of the 
resulting cluster to any other cluster, ck, can be 
computed by:

– Single Link:

– Complete Link:
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c2 c1 x5

c2

c1 1 0.5

x5 0.5 1

x1 x2 c1 x5

x1 1 0.8 0.3

x2 0.8 1 0.2

c1 0.5

x5 0.3 0.2 0.5 1

Single-Link Example
x1 x2 x3 x4 x5

x1 1 0.8 0.2 0.7 0.3

x2 0.8 1 0.1 0.5 0.2

x3 0.2 0.1 1 0.9 0.5

x4 0.7 0.5 0.9 1 0.4

x5 0.3 0.2 0.5 0.4 1

x1 x2 c1 x5

x1 1 0.8 0.7 0.3

x2 0.8 1 0.5 0.2

c1 0.7 0.5 1 0.5

x5 0.3 0.2 0.5 1

Merge x3,x4
replace with max

c2 c1 x5

c2 1 0.7 0.3

c1 0.7 1 0.5

x5 0.3 0.5 1

Merge x1,x2
replace with max

c3 x5

c3 1 0.5

x5 0.5 1

Merge c1,c2
replace with max



Group Average 
Agglomerative Clustering

• Use average similarity across all pairs within 
the merged cluster to measure the similarity 
of two clusters.

• Compromise between single and complete 
link.
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Computing 
Group Average Similarity

• Assume cosine similarity and normalized 
vectors with unit length.

• Always maintain sum of vectors in each 
cluster.

• Compute similarity of clusters in constant 
time:
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Non-Hierarchical Clustering

• K-means clustering (“hard”)

• Mixtures of Gaussians and training via 
Expectation maximization Algorithm (“soft”)



Clustering Criterion

• Evaluation function that assigns a (usually 
real-valued) value to a clustering
– Clustering criterion typically function of 

• within-cluster similarity and 

• between-cluster dissimilarity

• Optimization
– Find clustering that maximizes the criterion

• Global optimization (often intractable)

• Greedy search

• Approximation algorithms



K-Means Algorithm

• Input: k = number of clusters, Euclidian distance d

• Select k random instances {s1, s2,… sk} as seeds.

• Until clustering converges or other stopping criterion:

• For each instance xi:

• Assign xi to the cluster cj such that d(xi, sj) is min.

• For each cluster cj //update the centroid of each cluster

• sj = (cj) 

Note: Clusters represented via centroids
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K-means Example
(k=2)

Pick seeds

Reassign clusters

Compute centroids

x

x

Reassign clusters

x

x xx Compute centroids

Reassign clusters

Converged!



Time Complexity
• Assume computing distance between two 

instances is O(N) where N is the dimensionality 
of the vectors.

• Reassigning clusters for n points: O(kn) distance 
computations, or O(knN).

• Computing centroids: Each instance gets added 
once to some centroid: O(nN).

• Assume these two steps are each done once for i
iterations:  O(iknN).

• Linear in all relevant factors, assuming a fixed 
number of iterations.



Buckshot Algorithm

Problem
• Results can vary based on random seed selection, 

especially for high-dimensional data.
• Some seeds can result in poor convergence rate, or 

convergence to sub-optimal clusterings.
Idea: Combine HAC and K-means clustering.
• First randomly take a sample of instances of size n1/2

• Run group-average HAC on this sample 
• Use the results of HAC as initial seeds for K-means.
• Overall algorithm is efficient and avoids problems of 

bad seed selection.



Non-Hierarchical Clustering

• K-means clustering (“hard”)

• Mixtures of Gaussians and training via 
Expectation maximization Algorithm (“soft”)


