Online Learning: Partial Information and Bandits

CS6780 - Advanced Machine Learning Spring 2019

Cornell University

http://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-uchialgorithm/

 $\underline{\text{http://jeremykun.com/2013/11/08/adversarial-bandits-and-the-exp3-algorithm/2013/11/08/adversaria$

Bandit Learning Model

- Setting
 - -N arms named $H = \{h_1, ..., h_N\}$
 - In each round t, each arm \mathbf{h}_i performs an action and incurs
 - Algorithm can select which arm to pull in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects arm \boldsymbol{h}_{i_t} according to strategy \boldsymbol{A}_{w_t} and follows its
 - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$ (all but Δ_{t,i_t} unobserved)
 - Algorithm observes and incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on Δ_{t,i_t}

Exponentiated Gradient Algorithm for Bandit Setting (EXP3)

- Initialize $w_1 = \left(\frac{1}{N}, ..., \frac{1}{N}\right), \gamma = \min \left\{1, \sqrt{\frac{N \log N}{(e-1)\Delta T}}\right\}$
- FOR t from 1 to T
 - Algorithm randomly picks i_t with probability $P_t(i_t) = (1-\gamma)w_{t,i} + \gamma/N$
 - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm observes and incurs loss Δ_{t,i_t}
 - Algorithm updates w for bandit i_t as

$$w_{t+1,i_t} = w_{t,i_t} \exp\left(-\eta \Delta_{t,i_t}/P(i_t)\right)$$
 Then normalize w_{t+1} so that $\sum_j w_{t+1,j} = 1$.

Adversarial Bandit Regret

- - Compare performance to best arm in hindsight
- Overall loss of best arm i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^{I} \Delta_{t,i^*}$$

- Expected loss of algorithm A over sequence of arm selections i_t is

$$E_A\left[\sum_{t=1}^T \Delta_{t,i_t}\right]$$

Regret is difference between expected loss of algorithm and best fixed

$$ExpectedRegret(T) = E_A \left[\sum_{t=1}^{T} \Delta_{t, i_t} \right] - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t, i^*}$$

EXP3 Regret Bound

• Theorem: For $\gamma \in]0,1]$ and stopping time TEXP3 has expected regret of at most

$$ERegret(T) \le (e-1)\gamma \left(\min_{i} \sum_{t=1}^{T} \Delta_{t,i}\right) + \frac{N \log N}{\gamma}$$

• Corollary: For $\Delta_{t,i} \leq \Delta$, EXP3 with γ as on previous slide has expected regret of at most $ERegret(T) \leq 2.63 \sqrt{\Delta T N log N}$.

Stochastic Bandit Learning Model

- - -N arms named $H = \{h_1, \dots, h_N\}$
 - In each round t, each am Π_i performs an action and incurs loss $\Delta_{t,i}$ drawn from fixed distribution $P(\Delta|i)$ with mean μ_i .
 - Algorithm can select which ar
- · Interaction Model
 - FOR t from 1 to T
 - Algorithm selects arm h_{i,t} accor action y
 - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$ (al
 - · Algorithm observes and incurs l
 - Algorithm updates w_t to w_{t+1} by

Stochastic Bandit Regret

- Idea
- Compare performance to arm with best expected performance
- Regret
 - Overall loss of best arm i^* is

$$\Delta_T^* = T \min_{i \in [1..N]} \mu_i = T \mu_{i^*}$$

— Expected loss of algorithm ${\cal A}$ over sequence of arm selections i_t is

$$E_A \left[\sum_{t=1}^T \Delta_{t,i_t} \right.$$

 Regret is difference between expected loss of algorithm and best fixed arm in hindsight

$$ExpectedRegret(T) = E_A \left[\sum_{t=1}^{T} \Delta_{t, i_t} \right] - T\mu_{i^*}$$

UCB1 Algorithm

- Init:
 - Play each arm i once to get initial values for $w_1...w_N$.

$$-n = (1, ..., 1)$$

• For t from (N+1) to T

$$- \operatorname{Play arm} i_t = argmin_i \ \left\{ \! \frac{w_i}{n_i} \! - \! \sqrt{2\log \frac{T}{n_i}} \! \right\}$$

- Algorithm observes and incurs loss Δ_{t,i_t}
- $-w_i = w_i + \Delta_{t,i_t}$
- $-n_i = n_i + 1$

UCB1 Regret Bound

Theorem: The expected regret of UCB1 is at most

$$O\left(\sum_{i \neq i^*} \frac{\log T}{\epsilon_i}\right)$$

where i^* is the best arm and $\epsilon_i = \mu_{i^*} - \mu_i$.

Other Online Learning Problems

- Contextual Bandits
- Dueling Bandits
- Coactive Learning
- Online Convex Optimization
- · Partial Monitoring