Online Learning: Partial Information and Bandits CS6780 - Advanced Machine Learning Spring 2019 Cornell University http://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-uchialgorithm/ $\underline{\text{http://jeremykun.com/2013/11/08/adversarial-bandits-and-the-exp3-algorithm/2013/11/08/adversaria$ #### **Bandit Learning Model** - Setting - -N arms named $H = \{h_1, ..., h_N\}$ - In each round t, each arm \mathbf{h}_i performs an action and incurs - Algorithm can select which arm to pull in each round - Interaction Model - FOR t from 1 to T - Algorithm selects arm \boldsymbol{h}_{i_t} according to strategy \boldsymbol{A}_{w_t} and follows its - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$ (all but Δ_{t,i_t} unobserved) - Algorithm observes and incurs loss Δ_{t,i_t} - Algorithm updates w_t to w_{t+1} based on Δ_{t,i_t} # **Exponentiated Gradient Algorithm** for Bandit Setting (EXP3) - Initialize $w_1 = \left(\frac{1}{N}, ..., \frac{1}{N}\right), \gamma = \min \left\{1, \sqrt{\frac{N \log N}{(e-1)\Delta T}}\right\}$ - FOR t from 1 to T - Algorithm randomly picks i_t with probability $P_t(i_t) = (1-\gamma)w_{t,i} + \gamma/N$ - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$ - Algorithm observes and incurs loss Δ_{t,i_t} - Algorithm updates w for bandit i_t as $$w_{t+1,i_t} = w_{t,i_t} \exp\left(-\eta \Delta_{t,i_t}/P(i_t)\right)$$ Then normalize w_{t+1} so that $\sum_j w_{t+1,j} = 1$. #### Adversarial Bandit Regret - - Compare performance to best arm in hindsight - Overall loss of best arm i^* in hindsight is $$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^{I} \Delta_{t,i^*}$$ - Expected loss of algorithm A over sequence of arm selections i_t is $$E_A\left[\sum_{t=1}^T \Delta_{t,i_t}\right]$$ Regret is difference between expected loss of algorithm and best fixed $$ExpectedRegret(T) = E_A \left[\sum_{t=1}^{T} \Delta_{t, i_t} \right] - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t, i^*}$$ ## **EXP3** Regret Bound • Theorem: For $\gamma \in]0,1]$ and stopping time TEXP3 has expected regret of at most $$ERegret(T) \le (e-1)\gamma \left(\min_{i} \sum_{t=1}^{T} \Delta_{t,i}\right) + \frac{N \log N}{\gamma}$$ • Corollary: For $\Delta_{t,i} \leq \Delta$, EXP3 with γ as on previous slide has expected regret of at most $ERegret(T) \leq 2.63 \sqrt{\Delta T N log N}$. # Stochastic Bandit Learning Model - - -N arms named $H = \{h_1, \dots, h_N\}$ - In each round t, each am Π_i performs an action and incurs loss $\Delta_{t,i}$ drawn from fixed distribution $P(\Delta|i)$ with mean μ_i . - Algorithm can select which ar - · Interaction Model - FOR t from 1 to T - Algorithm selects arm h_{i,t} accor action y - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$ (al - · Algorithm observes and incurs l - Algorithm updates w_t to w_{t+1} by ### **Stochastic Bandit Regret** - Idea - Compare performance to arm with best expected performance - Regret - Overall loss of best arm i^* is $$\Delta_T^* = T \min_{i \in [1..N]} \mu_i = T \mu_{i^*}$$ — Expected loss of algorithm ${\cal A}$ over sequence of arm selections i_t is $$E_A \left[\sum_{t=1}^T \Delta_{t,i_t} \right.$$ Regret is difference between expected loss of algorithm and best fixed arm in hindsight $$ExpectedRegret(T) = E_A \left[\sum_{t=1}^{T} \Delta_{t, i_t} \right] - T\mu_{i^*}$$ ## **UCB1** Algorithm - Init: - Play each arm i once to get initial values for $w_1...w_N$. $$-n = (1, ..., 1)$$ • For t from (N+1) to T $$- \operatorname{Play arm} i_t = argmin_i \ \left\{ \! \frac{w_i}{n_i} \! - \! \sqrt{2\log \frac{T}{n_i}} \! \right\}$$ - Algorithm observes and incurs loss Δ_{t,i_t} - $-w_i = w_i + \Delta_{t,i_t}$ - $-n_i = n_i + 1$ #### **UCB1** Regret Bound Theorem: The expected regret of UCB1 is at most $$O\left(\sum_{i \neq i^*} \frac{\log T}{\epsilon_i}\right)$$ where i^* is the best arm and $\epsilon_i = \mu_{i^*} - \mu_i$. ## Other Online Learning Problems - Contextual Bandits - Dueling Bandits - Coactive Learning - Online Convex Optimization - · Partial Monitoring