Online Learning: Expert Setting

CS6780 – Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

Reading: Shalev-Shwartz/Ben-David, 287-297 (at http://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/copy.html)

Online Classification Model

- Setting
 - Classification
 - Hypothesis space H with h: $X \rightarrow Y$
 - Measure misclassifications (i.e. zero/one loss)
- Interaction Model
 - Initialize hypothesis $h \in H$
 - FOR t from 1 to T
 - Receive x_t
 - Make prediction $\widehat{y}_t = h(x_t)$
 - Receive true label y_t
 - Record if prediction was correct (e.g., $\hat{y}_t = y_t$)
 - Update h

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}$
- Algorithm:
 - $\vec{w}_0 = \vec{0}, \ k = 0$
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0 \# \# \#$ makes mistake
 - $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - $\cdot k = k + 1$
 - * ENDIF
 - ENDFOR
- Output: \vec{w}_k

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ with $R = \max \|\vec{x}_i\|$,

if there exists a weight vector \vec{w}_{opt} with $\left\| \vec{w}_{opt} \right\| = 1$ and

 $y_i\left(\vec{w}_{opt}\cdot\vec{x}_i\right)\geq\delta$

for all $1 \leq i \leq n$, then the Perceptron makes at most

 $\frac{R^2}{\delta^2}$ errors.

Expert Learning Model

- Setting
 - N experts named $H = \{h_1, \dots, h_N\}$
 - Each expert h_i takes an action $y = h_i(x_t)$ in each round t and incurs loss $\Delta_{t,i}$
 - Algorithm can select which expert's action to follow in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert $h_{i\,t}$ according to strategy A_{w_t} and follows its action y
 - Experts incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on $\Delta_{t,1} \dots \Delta_{t,N}$

Halving Algorithm

- Setting
 - N experts named $H = \{h_1, \dots, h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - Perfect expert exists in H
- Algorithm
 - $-VS_1 = H$
 - FOR t = 1 TO T
 - Predict the same y as majority of $h_i \in VS_t$
 - $VS_{t+1} = VS_t$ minus those $h_i \in VS_t$ that were wrong
- Mistake Bound
 - How many mistakes can the Halving algorithm make before predicting perfectly?

Regret

- Idea
 - N experts named $H = \{h_1, ..., h_N\}$
 - Compare performance of A to best expert i^* in hindsight.
- Regret
 - Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

Loss of algorithm A at time t is

 $\Delta_{t,i}$

for algorithm that picks recommendation of expert $i = A(w_t)$ at time t.

 Regret is difference between loss of algorithm and best fixed expert in hindsight

$$Regret(T) = \sum_{t=1}^{T} \Delta_{t,A(w_t)} - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Weighted Majority Algorithm (Deterministic)

• Setting

- N experts named $H = \{h_1, ..., h_N\}$
- Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
- There may be no expert in H that acts perfectly
- Algorithm
 - Initialize $w_1 = (1, 1, \dots, 1)$
 - FOR t = 1 TO T
 - Predict the same y as majority of $h_i \in H$, each weighted by $w_{t,i}$
 - FOREACH $h_i \in H$
 - IF h_i incorrect THEN $w_{t+1,i} = w_{t,i} * \beta$ ELSE $w_{t+1,i} = w_{t,i}$
- Regret Bound
 - How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Exponentiated Gradient Algorithm for Expert Setting (EG)

- Setting
 - N experts named $H = \{h_1, \dots, h_N\}$
 - Any actions, any positive and bounded loss
 - There may be no expert in H that acts perfectly
- Algorithm
 - Initialize $\widehat{w}_1 = (1, ..., 1)$
 - FOR t from 1 to T
 - Algorithm randomly picks i_t from $P(I_t = i_t) = w_{t,i}$ where $w_{t,i} = \widehat{w}_{t,i}/Z_t$ and $Z_t = \sum_i \widehat{w}_{t,i}$
 - Experts incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w for all experts i as $\forall i, \widehat{w}_{t+1,i} = \widehat{w}_{t,i} \exp(-\eta \Delta_{t,i})$

Expected Regret

• Idea

Compare performance to best expert in hindsight

- Regret
 - Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

- Expected loss of algorithm $A(w_t)$ at time t is

$$E_{A(w_t)}[\Delta_{t,i}] = w_t \Delta_t$$

for randomized algorithm that picks recommendation of expert i at time t with probability $w_{t,i}$.

 Regret is difference between expected loss of algorithm and best fixed expert in hindsight

$$ExpectedRegret(T) = \sum_{t=1}^{T} w_t \Delta_t - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Regret Bound for Exponentiated Gradient Algorithm

• Theorem

The expected regret of the exponentiated gradient algorithm in the expert setting is bounded by

$$ExpectedRegret(T) \le \sqrt{2 T \log(|H|)}$$

where $\Delta \in [0,1]$ and $\eta = \sqrt{2 \log(|H|) / T}$ and $T > 2\log(|H|)$.