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Generative vs. Conditional vs. ERM

* Empirical Risk Minimization

— Find h = argmin Errg(h) s.t. overfitting control
heH
— Pro: directly estimate decision rule

— Con: need to commit to loss, input, and output before training
e Discriminative Conditional Model

— Find P(Y|X), then derive h(x) via Bayes rule

— Pro: not yet committed to loss during training

— Con: need to commit to input and output before training; learning
conditional distribution is harder than learning decision rule

 Generative Model
— Find P(X,Y), then derive h(x) via Bayes rule

— Pro: not yet committed to loss, input, or output during training; often
computationally easy

— Con: Needs to model dependencies in X



Bayes Decision Rule

* Assumption:
— learning task P(X,Y)=P(Y|X) P(X) is known
* Question:

— Given instance x, how should it be classified to
minimize prediction error?

* Bayes Decision Rule:

hbayes(f) = argmaxyey [P(Y — Y|X = 9_5)]



Example: Modeling Flu Patients

e Data: fever | cough | pukes | flu?
(h,,n) | (y,n) (\A))

* Approach: One model for flu, one for not-flu.



Bayes Theorem

* |tis possible to “switch” conditioning
according to the following rule

* Given any two random variables X and Y, it

holds that
P(X =x|Y =y)P(Y = y)

P(Y =y|X =x) = P =1

* Note that

P(X=x) = ) P(X =xIY =y)P(Y =)
yeY



Naive Bayes’ Classifier
(Multivariate)

MOdEI for eac 1 CIaSS fever cough pukes flu?
= (hLn) | (yn) | (vn)

P(X = Z|Y = +1) = r P(X; = x;|Y = +1)
i=1

N
P(X = Z|Y = —1) = HP(Xi — x|V = —1)
i=1

Prior probabilities

P(Y = +1),P(Y = -1)
e Classification rule:

N
nawe(x) — dargmax P(Y Y) P(X — xlly y)
ye{+1,—-1} =1



Estimating the Parameters of NB

* Count frequencies in training data
— n: number of training examples
— n, / n_: number of pos/neg examples

— #(Xi=x, y): number of times feature
X takes value x; for examples in class y

— |X;|: number of values attribute X.
can take
* Estimating P(Y)
— Fraction of positive / negative examples in training data
n,

~ ~ n_
P(Y=+1) =— P(Y=-1)=—
n n

e Estimating P(X]Y)
— Maximum Likelihood Estimate

~ #(X; = x;,
PCX; = xilY = y) = 2 = XY)

ny

— Smoothing with Laplace estimate

N #(X;: = x;, +1
PO, = x|V = y) = P& = X))

ny + |Xl|




Linear Discriminant Analysis

e Spherical Gaussian model with unit variance for each class
1
P(X = X|Y = +1)~exp —E(f — iy)?

1
P(X = X|Y = —1)~exp —E(f —_)?
* Prior probabilities
P(Y = +1),P(Y = —-1)

e C(Classification rule

hipa(X) = argmax {P(Y y)exp <——(x _'“y) >}

ye{+1,—1}

argmax {log(P(Y y) -3 (x — dy) }
ye{+1,—-1}



Estimating the Parameters of LDA

* Count frequencies in training data

— (X1, Y1), oo, (X, ¥)~P(X,Y): training data

— n: number of training examples

— n, / n_: number of positive/negative training examples
e Estimating P(Y)

— Fraction of pos / neg examples in training data

n,

PiY=+1D) =  P(Y=-1)=—
n n
* Estimating class means



Naive Bayes Classifier
(Multinomial)

* Application: Text classification (x = (wq, ..., w;) sequence)

* Assumption
PX=x|Y =41 =] |PW =w]Y = +1)

o~

PX=xlY=-D=]| |PW=w]Y =-1)
JiL=iL
e (Classification Rule

l
hnaive(x) = argmax {P(Y = y) P(W =wlY =y)
yE{+1,-1} =1



Estimating the Parameters of
Multinomial Naive Bayes

* Count frequencies in training data

— n: number of training
examples

— n,/n_:number of
pos/neg examples

— #(W=w, y): number of
times word w occurs in examples of class y

— 1, /1 : total number of words in pos/neg examples
— | V |: size of vocabulary
e Estimating P(Y)

~ n ~ n
P(Y=+1)=— P(Y=-1)=—
n n

e Estimating P(X|Y) (smoothing with Laplace estimate):
#HW=w,y)+1
Ly, + V|

PW=wlY =y)=



