
Deep Network Models

CS6780 – Advanced Machine Learning
Spring 2019

Thorsten Joachims
Cornell University

Reading: Murphy 16.5
https://www.analyticsvidhya.com/blog/2018/12/guide-

convolutional-neural-network-cnn/

Discriminative Training of Linear Rules

• Soft-Margin SVM

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤

– Δ ത𝑦, 𝑦𝑖 = max 0,1 − 𝑦𝑖 ത𝑦

• Perceptron
– 𝑅 𝑤 = 0

– Δ ത𝑦, 𝑦𝑖 = max 0,−𝑦𝑖 ത𝑦

• Linear Regression
– 𝑅 𝑤 = 0

– Δ ത𝑦, 𝑦𝑖 = 𝑦𝑖 − ത𝑦 2

• Ridge Regression

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤

– Δ ത𝑦, 𝑦𝑖 = 𝑦𝑖 − ത𝑦 2

• Lasso

– 𝑅 𝑤 =
1

2
∑ 𝑤𝑖

– Δ ത𝑦, 𝑦𝑖 = 𝑦𝑖 − ത𝑦 2

• Regularized Logistic Regression /
Conditional Random Field

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤

– Δ ത𝑦, 𝑦𝑖 = log 1 + 𝑒−𝑦𝑖 ത𝑦

min
𝑤,𝑏

𝑅 𝑤 + 𝐶
1

𝑛
෍

𝑖=1

𝑛

Δ 𝑤 ∗ 𝑥𝑖 + 𝑏, 𝑦𝑖

Regularizer
Training Loss /
Empirical Risk /
Training error

Regularization
Parameter

𝑓(𝑥𝑖|𝑤)

Discriminative Training of Non-Linear
Rules

Options for 𝑓 𝑥𝑖 𝑤 :

• Kernelized linear functions 𝑤 ⋅ 𝜙 𝑥 + 𝑏
– Convex for L2 regularization  stochastic gradient descent

• Linear combinations of trees ∑𝑗𝑤𝑗 𝐷𝑒𝑐𝑇𝑟𝑒𝑒𝑗(𝑥)

– Special Boosting algorithms

• Deep Networks
– Not convex, but stochastic gradient descent anyway

min
𝑤,𝑏

𝑅 𝑤 + 𝐶
1

𝑛
෍

𝑖=1

𝑛

Δ 𝑓(𝑥𝑖|𝑤), 𝑦𝑖

Regularizer
Training Loss /
Empirical Risk /
Training error

Regularization
Parameter

Naïve Two-layer Perceptron

Idea: 𝑓(𝑥|𝑊) by stacking two layers perceptrons
on top of each other.

– First layer: k perceptrons with

𝑎 =
𝑤1 ⋅ 𝑥 + 𝑏1

⋮
𝑤𝑘 ⋅ 𝑥 + 𝑏𝑘

– Second layer: 1 perceptron with
𝑓(𝑥|𝑤0, 𝑤1, … , 𝑤𝑘) = 𝑤0 ⋅ 𝑎 + 𝑏

 Need nonlinearity 𝜎 𝑤𝑖 ⋅ 𝑥 + 𝑏𝑖

Two-layer Perceptron

Use nonlinear activation function 𝜎:
– First layer: 𝑘 perceptrons (aka hidden units) with

𝑎 =
𝜎 𝑤1 ⋅ 𝑥 + 𝑏1

⋮
𝜎 𝑤𝑘 ⋅ 𝑥 + 𝑏𝑘

– Final layer: 1 perceptron (aka output unit) with
𝑓(𝑥|𝑤) = 𝑤0 ⋅ 𝑎 + 𝑏0

Choices for 𝜎(𝑝)
– Sigmoid: tanh p
– Gaussian: exp −p2

– ReLU: max(0, p)
– SoftPlus: log 1 + 𝑒𝑝

Multi-layer Perceptron

Keep stacking layers with non-linear activation functions:
– First layer: 𝑘 perceptrons with

𝑎0 =
𝜎 𝑤01 ⋅ 𝑥 + 𝑏1

⋮
𝜎 𝑤0𝑘 ⋅ 𝑥 + 𝑏𝑘

= 𝜎 W0 ⋅ 𝑥 + 𝑏0

– 𝑑 hidden layers: 𝑘 perceptrons with

𝑎𝑙 =
𝜎 𝑤𝑙1 ⋅ 𝑎𝑙−1 + 𝑏𝑙1

⋮
𝜎 𝑤𝑙𝑘 ⋅ 𝑥𝑙−1 + 𝑏𝑙𝑘

= 𝜎 𝑊𝑙 ⋅ 𝑎𝑙−1 + 𝑏𝑙

– Final layer: 1 perceptron with
𝑓(𝑥|𝑤) = 𝑤0 ⋅ 𝑎𝑑 + 𝑏0

Optimization Problem

Problem: Training optimization problem

min
𝑊,𝐵

𝑅 𝑊 + 𝐶
1

𝑛
෍

𝑖=1

𝑛

Δ 𝑓(𝑥𝑖|𝑊, 𝐵), 𝑦𝑖

is not convex!  local optima.

Algorithm:

– Stochastic Gradient Descent (SGD)

– Efficient via Backpropagation Algorithm

Gradient Descent

Optimization Problem:

min
𝑊

𝑅 𝑊 + 𝐶
1

𝑛
෍

𝑖=1

𝑛

Δ 𝑓(𝑥𝑖|𝑊), 𝑦𝑖

Gradient Descent Algorithm
– REPEAT

• Compute gradient 𝛻𝑊

𝛻W =
𝜕𝑅(𝑊)

𝜕𝑊
+ 𝐶

1

𝑛
෍

𝑖=1

𝑛
𝜕Δ 𝑓(𝑥|𝑊), 𝑦𝑖

𝜕𝑊

• Update weights 𝑊 = 𝑊 − 𝛼𝛻𝑊

Stochastic Gradient Descent

Idea:
– Computation of gradient is expensive (full pass)

– Replace gradient with cheaper approximation

Gradient Descent Algorithm
– REPEAT

• Draw random subsample 𝑀 of training examples

• Approximate gradient 𝛻𝑊

𝛻W =
𝜕𝑅(𝑊)

𝜕𝑊
+ 𝐶

1

|𝑀|
෍

𝑖∈𝑀

𝜕Δ 𝑓(𝑥|𝑊), 𝑦𝑖
𝜕𝑊

• Update weights 𝑊 = 𝑊 − 𝛼𝛻𝑊

Optimization Issues and Tricks

Tricks:

– Normalize input features (e.g. standardize to zero
mean and variance one)

– Batch normalization to normalize intermediate
layers

– Use Momentum

– Reduce stepsize as training progresses

– Minibatches reduce variance of gradient

Convolutions

• Local filter that detects higher-order features

• Stride: Offset by which filter is moved

• Padding: Border to ensure size does not shrink

https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/

Convolutions over Volumes

• Summing over multi-dimensional inputs

• Each filter creates one output dimension

https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/

Pooling Layers

• Reduce input size

• Size of pooling area

• Stride

• Aggregation: max or average pooling

https://www.analyticsvidhya.com/blog/2018/12/guide-convolutional-neural-network-cnn/

LeNet5 for Vision

Other architectures
• AlexNet
• VGG
• ResNet
• DenseNet

Murphy Figure 16.14

