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Discriminative ERM Learning

e Modeling Step:

o Select classification rules H to consider (hypothesis
space)

¢ Training Principle:

 Given training sample (¥4, y1), -.., &n, ¥n)
* Find h from H with lowest training error
- Empirical Risk Minimization
¢ Argument: generalization error bounds = low

training error leads to low prediction error, if
overfitting is controlled.

e Examples: SVM, decision trees, Perceptron

Bayes Decision Rule

* Assumption:
— learning task P(X,Y)=P(Y|X) P(X) is known
* Question:

— Given instance x, how should it be classified to
minimize prediction error?

* Bayes Decision Rule (for zero/one loss):
hbayes()?) = argmaxyGY[P(Y =ylX = 7?)]
= argmax,ey[P(Y = y,X = X)]

Generative vs. Conditional vs. ERM

Empirical Risk Minimization
— Find h = argmin Er7g(h) s.t. overfitting control

— Pro: directly :Ztimate decision rule

— Con: need to commit to loss, input, and output before training
Discriminative Conditional Model

— Find P(Y|X), then derive h(x) via Bayes rule

— Pro: not yet committed to loss during training

— Con: need to commit to input and output before training; learning
conditional distribution is harder than learning decision rule

Generative Model
— Find P(X,Y), then derive h(x) via Bayes rule

— Pro: not yet committed to loss, input, or output during training; often
computationally easy

— Con: Needs to model dependencies in X

Logistic Regression

* Data:

=S = (e, y1) o (Xn)), x € RV and y € {=1,+1}
* Model:

— P(y|x,w) = Ber(y|sigm(w - x))
* Training objective:

n
w= argminz log(1 + exp(—y;w - x;))
vo=

* Algorithm:
— Stochastic gradient descent, Newton, etc.

Regularized Logistic Regression

Data:

=S =((xp,y1) . Gt ¥)), x RN and y € {—1, +1}
Model:

— P(y|x,w) = Ber(y|sigm(w - x)), P(w) = N(w|0, %)
Training objective:

n
w= argmin%w w4+ Cz log(1 + exp(—y;w - x;))
w i=1
Algorithm:
— Stochastic gradient descent, Newton, etc.




Softmax vs. Hinge Loss
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Plot via www.desmos.com

Ridge Regression

* Data:
=S=((r1,31) - Gt y)), x €R¥and y € R

* Model:
- P(ylx,w) = N(y|w - x,E), P(w) = N(w|0,X)

* Training objective:
1 n
w= argminiw w4+ CZ(W “x; = i)?
w i=1

* Algorithm:
—w = (diag(C) + XTX)"1xTy

Discriminative Training of Linear Rules

—
Regularization

Parameter Empirical Risk /

Training error
Ridge Regression
- Rw)= %w *w

= AGy) = i—7)?

Regularizer

* Soft-Margin SVM
- R(w) = %w *w
= A@,y) = max(0,1 - y;y)
* Perceptron ¢ Lasso
- RW) =33Iwil

— R(w) =
- MGy =
* Linear Regression * Regularized Logistic Regression /

- AGY) = (i = 9)?
- Rw)=0 Conditional Random Field
= AGY) =i -9 — RW)=l1wrw
2
- A, y) = log(1 +e7¥¥)




