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Discriminative ERM Learning

e Modeling Step:
e Select classification rules H to consider (hypothesis
space)
e Training Principle:
e Given training sample (X1, ¥1), ..., (X, ¥,

e Find h from H with lowest training error
- Empirical Risk Minimization

e Argument: generalization error bounds = low
training error leads to low prediction error, if
overfitting is controlled.

e Examples: SVM, decision trees, Perceptron



Bayes Decision Rule

* Assumption:
— learning task P(X,Y)=P(Y|X) P(X) is known
* Question:

— Given instance x, how should it be classified to
minimize prediction error?

* Bayes Decision Rule (for zero/one loss):

hbayes(f) = argmaxyey :P(Y — Y|X = 3_5)

= argmax,ey[P(Y = y,X = X))



Generative vs. Conditional vs. ERM

* Empirical Risk Minimization

— Find h = argmin Errs(h) s.t. overfitting control
heH
— Pro: directly estimate decision rule

— Con: need to commit to loss, input, and output before training
e Discriminative Conditional Model

— Find P(Y|X), then derive h(x) via Bayes rule

— Pro: not yet committed to loss during training

— Con: need to commit to input and output before training; learning
conditional distribution is harder than learning decision rule

 Generative Model
— Find P(X,Y), then derive h(x) via Bayes rule

— Pro: not yet committed to loss, input, or output during training; often
computationally easy

— Con: Needs to model dependencies in X



Logistic Regression

DENE

— S = ((xl,yl) (xn,yn)), x ERNandy € {—1,+1}
Model:

— P(y|x,w) = Ber(y|sigm(w - x))
Training objective:

n
w = argminz log(1 + exp(—y;w - x;))
Y=

Algorithm:

— Stochastic gradient descent, Newton, etc.



Regularized Logistic Regression

DENE

— S = ((xl,yl) (xn,yn)), x ERNandy € {—1,+1}

Model:

— P(ylx,w) = Ber(y|sigm(w - x)), P(w) = N(w|0, %)

Training objective:
n

|
w = argminzw -w+C z log(1 + exp(—y;w - x;))
W i=1

Algorithm:

— Stochastic gradient descent, Newton, etc.



Softmax vs. Hinge Loss

Plot via www.desmos.com



Ridge Regression

DENE

—5 = ((x1»Y1) (xan))' x € R¥andy € R
Model:

— P(ylx,w) = N(y|lw - x,E), P(w) = N(w|0,X)
Training objective:

n
1
w = argminfw - W + CZ(W "X T Yi)z
w i=1

Algorithm:
—w = (diag(C) + XTX)"1xTy



Discriminative Training of Linear Rules

Training Loss /
Empirical Risk /
Training error

Regularization
Parameter

Regularizer

e Soft-Margin SVM * Ridge Regression

— R(W)=%W*W — R(W)=%W*W

- A(,y;) = max(0,1 — y;y) - A y) = i — ¥)?
* Perceptron * Lasso

- igﬁﬂ j — R(w) = Zlwjl

AWt - AGy) = (i —¥)?
* Linear Regressio

(W) = 0 * Regularized Logistic Regression /
- R(w) = ) Conditional Random Field
- AGy) = (i —)? — RW) =lwrw

2

- A@,y) = log(1 +e7¥?)



