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Discriminative ERM Learning

• Modeling Step:
• Select classification rules H to consider (hypothesis 

space)

• Training Principle:
• Given training sample 𝒙𝟏, 𝒚𝟏 , … , 𝒙𝒏, 𝒚𝒏
• Find h from H with lowest training error
 Empirical Risk Minimization

• Argument: generalization error bounds  low 
training error leads to low prediction error, if 
overfitting is controlled.

• Examples: SVM, decision trees, Perceptron



Bayes Decision Rule

• Assumption: 

– learning task P(X,Y)=P(Y|X) P(X) is known

• Question:

– Given instance x, how should it be classified to 
minimize prediction error?

• Bayes Decision Rule (for zero/one loss): 

ℎ𝑏𝑎𝑦𝑒𝑠  𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌[𝑃 𝑌 = 𝑦 𝑋 =  𝑥 ]

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌[𝑃 𝑌 = 𝑦, 𝑋 =  𝑥 ]



Generative vs. Conditional vs. ERM 

• Empirical Risk Minimization
– Find ℎ = argmin

ℎ∈𝐻
𝐸𝑟𝑟𝑆(ℎ) s.t. overfitting control

– Pro: directly estimate decision rule
– Con: need to commit to loss, input, and output before training

• Discriminative Conditional Model
– Find P(Y|X), then derive h(x) via Bayes rule
– Pro: not yet committed to loss during training
– Con: need to commit to input and output before training; learning 

conditional distribution is harder than learning decision rule

• Generative Model
– Find P(X,Y), then derive h(x) via Bayes rule
– Pro: not yet committed to loss, input, or output during training; often 

computationally easy
– Con: Needs to model dependencies in X



Logistic Regression

• Data: 
– S = 𝑥1, 𝑦1 … 𝑥𝑛, 𝑦𝑛 , 𝑥 ∈ ℜ𝑁 and 𝑦 ∈ −1,+1

• Model: 

– 𝑃 𝑦 𝑥,𝑤 = 𝐵𝑒𝑟 𝑦 𝑠𝑖𝑔𝑚 𝑤 ⋅ 𝑥

• Training objective:

• Algorithm: 
– Stochastic gradient descent, Newton, etc.

 𝑤 = argmin
𝑤

 

𝑖=1

𝑛

log 1 + exp −𝑦𝑖𝑤 ⋅ 𝑥𝑖



Regularized Logistic Regression

• Data: 
– S = 𝑥1, 𝑦1 … 𝑥𝑛, 𝑦𝑛 , 𝑥 ∈ ℜ𝑁 and 𝑦 ∈ −1,+1

• Model: 
– 𝑃 𝑦 𝑥,𝑤 = 𝐵𝑒𝑟 𝑦 𝑠𝑖𝑔𝑚 𝑤 ⋅ 𝑥 , 𝑃(𝑤) = 𝑁 𝑤 0, Σ

• Training objective:

• Algorithm: 
– Stochastic gradient descent, Newton, etc.

 𝑤 = argmin
𝑤

1

2
𝑤 ⋅ 𝑤 + 𝐶 

𝑖=1

𝑛

log 1 + exp −𝑦𝑖𝑤 ⋅ 𝑥𝑖



Softmax vs. Hinge  Loss

Plot via www.desmos.com



Ridge Regression

• Data: 
– S = 𝑥1, 𝑦1 … 𝑥𝑛, 𝑦𝑛 , 𝑥 ∈ ℜ𝑁 and 𝑦 ∈ ℜ

• Model: 
– 𝑃 𝑦 𝑥,𝑤 = 𝑁 𝑦 𝑤 ⋅ 𝑥, Ε , 𝑃(𝑤) = 𝑁 𝑤 0, Σ

• Training objective:

• Algorithm: 

–  𝑤 = 𝑑𝑖𝑎𝑔 𝐶 + 𝑋𝑇𝑋 −1𝑋𝑇𝑦

 𝑤 = argmin
𝑤

1

2
𝑤 ⋅ 𝑤 + 𝐶 

𝑖=1

𝑛

𝑤 ⋅ 𝑥𝑖 − 𝑦𝑖
2



Discriminative Training of Linear Rules

• Soft-Margin SVM 

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤

– Δ  𝑦, 𝑦𝑖 = max 0,1 − 𝑦𝑖  𝑦

• Perceptron
– 𝑅 𝑤 = 0

– Δ  𝑦, 𝑦𝑖 = max 0,−𝑦𝑖  𝑦

• Linear Regression
– 𝑅 𝑤 = 0

– Δ  𝑦, 𝑦𝑖 = 𝑦𝑖 −  𝑦 2

• Ridge Regression

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤

– Δ  𝑦, 𝑦𝑖 = 𝑦𝑖 −  𝑦 2

• Lasso

– 𝑅 𝑤 =
1

2
∑ 𝑤𝑖

– Δ  𝑦, 𝑦𝑖 = 𝑦𝑖 −  𝑦 2

• Regularized Logistic Regression / 
Conditional Random Field

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤

– Δ  𝑦, 𝑦𝑖 = log 1 + 𝑒−𝑦𝑖  𝑦

min
𝑤,𝑏

𝑅 𝑤 + 𝐶
1

𝑛
 

𝑖=1

𝑛

Δ 𝑤 ∗ 𝑥𝑖 + 𝑏, 𝑦𝑖

Regularizer
Training Loss / 
Empirical Risk / 
Training error

Regularization 
Parameter


