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Non-Linear Problems

Problem:

e some tasks have non-linear structure

* no hyperplane is sufficiently accurate

How can SVMs learn non-linear classification rules?



Extending the Hypothesis Space

Idea: add more features

Input Space

O

=>» Learn linear rule in feature space.
Example:

=>» The separating hyperplane in feature space is degree
two polynomial in input space.



Example

* InputSpace: X = (xq,Xx;) (2 attributes)
* Feature Space: ®(¥) = (x%,x5,x1,%5,X1%5,1) (6 attributes)




Dual SVM Optimization Problem

Primal Optimization Problem
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Theorem: If w* is the solution of the Primal and a* is the
solution of the Dual, then



Kernels

* Problem:
— Very many Parameters!

— Example: Polynomials of degree p over N attributes in input
space lead to O(NP) attributes in feature space!

* Solution:
— The dual OP depends only on inner products

> Kernel Functions K (&, b) = &(d) - @(b)
 Example:
— For CID(}?) = (x 12 2,\/_x1,\/_x2,\/_x1x2, 1) calculating
a-

K(a b) [ b + 1] computes inner product in feature
space.

=>» no need to represent feature space explicitly.



SVM with Kernel
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* New hypotheses spaces through new Kernels:
— Linear: K(c_i, E) —Gd-b
N S d
— Polynomial: K(&, b) = [& b+ 1]
N 12

— Radial Basis Function: K(&, b) = exp (—y[c? — b] )
— Sigmoid: K(&, I;) = tanh(y[& : 1_5] + c)



Examples of Kernels

Polynomial Radial Basis Function

K(a@b)=1[da b+1] K(d,5) = exp (—y[d - 5] )




What is a Valid Kernel?

Definition [simplified]: Let X be a nonempty set. A
function is a valid kernel in X if for all n and all
Xy,..., X, € X1t produces a Gram matrix

G; = K(x; x))

that is symmetric
G=G’
and positive semi-definite

Va:alGa =0



How to Construct Valid Kernels

Theorem: Let K; and K, be valid Kernels over X X X, a 2 0,
0 <A <1, fareal-valued function on X, ¢:X = R™ with
a kernel K5 over R™ X R™, and K a symmetric positive
semi-definite matrix. Then the following functions are
valid Kernels

K(x,z) = A K{(x,z) + (1-A) K,(x,2)
K(x,z) = a K,(x,2)
K(x,z) = K;(x,z) K,(x,2)
K(x,z) = f(x) f(z)
K(x,2) = K5(9(x),0(z))

K(x,z) =x"K z



Kernels for Non-Vectorial Data

* Applications with Non-Vectorial Input Data
—> classify non-vectorial objects

— Protein classification (x is string of amino acids)
— Drug activity prediction (x is molecule structure)
— Information extraction (x is sentence of words)
— Etc.
* Applications with Non-Vectorial Output Data
— predict non-vectorial objects
— Natural Language Parsing (y is parse tree)
— Noun-Phrase Co-reference Resolution (y is clustering)
— Search engines (y is ranking)

=>» Kernels can compute inner products efficiently!



Kernels for Discrete
and Structured Data

Kernels for Sequences: Two sequences are similar, if the
have many common and consecutive subsequences.

Example [Lodhi et al., 2000]: For 0 £ A <1 consider the
following features space
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obat) | 0 | o | a2 | 22 [ ] o |0 |0
oban) | 0 | 0 | 0 2 0 | 0 2

=> K(car,cat) = A%, efficient computation via dynamic programming




Properties of SVMs with Kernels

* EXxpressiveness

— SVMs with Kernel can represent any boolean function (for
appropriate choice of kernel)

— SVMs with Kernel can represent any sufficiently “smooth”
function to arbitrary accuracy (for appropriate choice of kernel)

 Computational

— Objective function has no local optima (only one global)

— Independent of dimensionality of feature space (but quadratic
in number of examples without additional approximations)

* Design decisions
— Kernel type and parameters
— Value of C



What else can be “Kernelized”?

Multi-class SVM
— [Schoelkopf/Smola Book, Section 7.6]

* Regression SVM
— [Schoelkopf/Smola Book, Section 1.6]
Kernel PCA
— [Schoelkopf/Smola Book, Section 13]
 Gaussian Processes

— [Schoelkopf/Smola Book, Section 16]

... and any other method that can be written in terms of
inner products.



