

Example: Margin in High-Dimension									
Training		1	1	Ŧ	1	1	1	у	
Sample Strain	x_1	x_2	<i>x</i> ₃	<i>x</i> ₄	<i>x</i> ₅	<i>x</i> ₆	<i>x</i> ₇		
(\vec{x}_1, y_1)	1	0	0	1	0	0	0	1	
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1	
(\vec{x}_{3}, y_{2})	0	1	0	0	0	1	0	-1	
(\vec{x}_{4}, y_{4})	0	1	0	0	0	0	1	-1	
	20						b		
	w ₁	w2	<i>w</i> ₃	w_4	w5	w ₆	W_7		
Hyperplane 1	1	1	0	0	0	0	0	2	
Hyperplane 2	0	0	0	1	1	-1	-1	0	
Hyperplane 3	1	-1	1	0	0	0	0	0	
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0	
Hyperplane 5	1	-1	0	0	0	0	0	0	
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0	
Hyperplane 7	0.67	-0.67	0	0.33	0.33	-0.33	-0.33	0	

Soft-Margin Separation

Idea: Maximize margin and minimize training Hard-Margin OP (Primal): Soft-Margin OP (Primal):

 $\begin{array}{ll} \mbox{Hard-Margin OP (Primal):} & \mbox{Soft-Margin OP (Primal):} & \mbox{min $\frac{1}{2}\vec{w}\cdot\vec{w}$ + C $\sum_{i=1} \xi_i$} \\ \mbox{w.s.} & y_1(\vec{w}\cdot\vec{x}_1+b) \geq 1 & \mbox{s.t.} & y_1(\vec{w}\cdot\vec{x}_1+b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0 \end{array}$

 $egin{array}{ccc} & ... & ... & ... \ & y_n(ec w\cdot ec x_n+b)\geq 1 & y_n(ec w\cdot ec x_n+b)\geq 1-\xi_n\wedge \xi_n\geq 0 \end{array}$

• Slack variable ξ_i measures by how

- much (x_i, y_i) fails to achieve margin δ • $\Sigma_{\varsigma_i}^{\varkappa}$ is upper bound on number of
- training errors*C* is a parameter that controls trade-
- C is a parameter that controls tradeoff between margin and training error.

Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always Leave-One-Out Errors. Algorithm:

- (R,α,ξ) = trainSVM(S_{train})
- − FOR $(x_i, y_i) \in S_{train}$
 - IF ξ_i >1 THEN loo++;
 - ELSE IF (2 $\alpha_i R^2 + \xi_i < 1$) THEN loo = loo;
 - + ELSE trainSVM(S $_{train} \setminus \{(x_{i\prime}y_i)\})$ and test explicitly

Experiment:

Training Data	Retraining Steps (%)	CPU-Time (sec)	
Reuters (n=6451)	0.58%	32.3	
WebKB (n=2092)	20.42%	235.4	
Ohsumed (n=10000)	2.56%	1132.3	