Support Vector Machines: Soft Margin and Duality

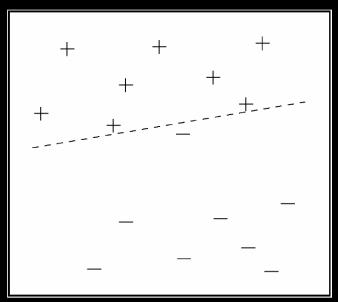
CS6780 – Advanced Machine Learning Spring 2019

Thorsten Joachims Cornell University

Reading: Schoelkopf/Smola Chapter 7.3, 7.5 Cristianini/Shawe-Taylor Chapter 2-2.1.1

Non-Separable Training Data

- Limitations of hard-margin formulation
 - For some training data, there is no separating hyperplane.
 - Complete separation (i.e. zero training error) can lead to suboptimal prediction error.



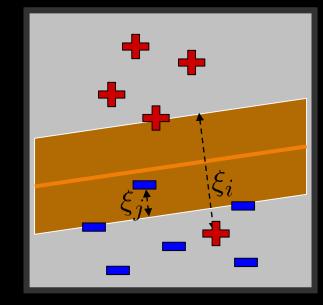
Soft-Margin Separation

Idea: Maximize margin and minimize training

Hard-Margin OP (Primal): $\lim_{ec{w},b} \frac{1}{2} \vec{w} \cdot \vec{w}$ s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1$ \dots $y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1$

Soft-Margin OP (Primal):
$$\min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{s} \xi_i$$
 $s.t.$ $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
$$\cdots$$
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$

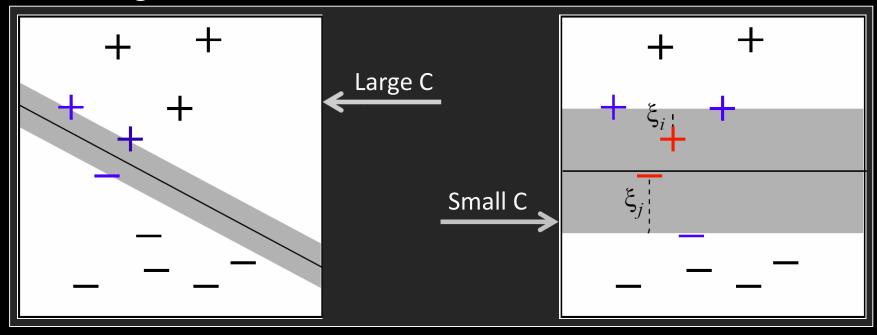
- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- *C* is a parameter that controls tradeoff between margin and training error.



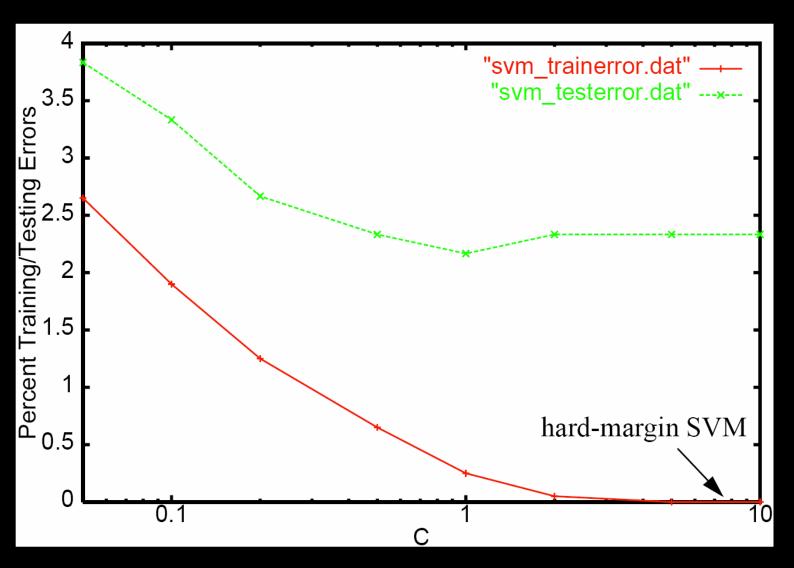
Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):
$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
 $s.t.$ $y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0$...
$$y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 - \xi_n \wedge \xi_n \geq 0$$



Example Reuters "acq": Varying C



Example: Margin in High-Dimension

Training	$ec{x}$						y	
Sample S _{train}	x_{I}	x_2	x_3	x_4	x_5	x_6	x_7	
(\vec{x}_1, y_1)	1	0	0	1	0	0	0	1
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1
(\vec{x}_3, y_3)	0	1	0	0	0	1	0	-1
(\vec{x}_4, y_4)	0	1	0	0	0	0	1	-1
	$ec{w}$						b	
	w_1	w_2	w_3	w_4	w_5	w_6	w_7	
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0
Hyperplane 5	1	-1	0	0	0	0	0	0
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0
Hyperplane 7	0.67	-0.67	0	0.33	0.33	-0.33	-0.33	0

(Batch) Perceptron Algorithm

```
Input: S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \vec{x}_i \in \Re^N, y_i \in \{-1, 1\}, I \in [1, 2, ..]
```

Algorithm:

- $\vec{w}_0 = \vec{0}$, k = 0
- repeat
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$ ### makes mistake
 - $\vec{v}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - k = k + 1
 - * ENDIF
 - ENDFOR
- until I iterations reached

Dual (Batch) Perceptron Algorithm

Input:
$$S=((\vec{x}_1,y_1),...,(\vec{x}_n,y_n)), \ \vec{x}_i \in \Re^N$$
, $y_i \in \{-1,1\}$, $I \in [1,2,..]$

Dual Algorithm:

- $\forall i \in [1..n] : \alpha_i = 0$
- repeat
 - FOR i=1 TO n* IF $y_i \left(\sum_{j=1}^n \alpha_j y_j (\vec{x}_j \cdot \vec{x}_i) \right) \le 0$ $\cdot \alpha_i = \alpha_i + 1$
 - * ENDIF
 - ENDFOR
- until I iterations reached

Primal Algorithm:

- \bullet $\vec{w} = \vec{0}, k = 0$
- repeat
 - FOR i=1 TO n* IF $y_i(\vec{w} \cdot \vec{x}_i) \le 0$ $\cdot \vec{w} = \vec{w} + y_i \vec{x}_i$
 - * ENDIF
 - ENDFOR
- until I iterations reached

SVM Solution as Linear Combination

Primal OP:

minimize:
$$P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
 subject to:
$$\forall_{i=1}^{n} : y_i [\vec{w} \cdot \vec{x}_i + b] \ge 1 - \xi_i$$

$$\forall_{i=1}^{n} : \xi_i \ge 0$$

• Theorem: The solution \vec{w}^* can always be written as a linear combination

$$\vec{w}^* = \sum_{i=1}^n \alpha_i y_i \vec{x}_i$$

of the training vectors with $0 \le \alpha_i \le C$.

- Properties:
 - Factor α_i indicates "influence" of training example (x_i, y_i) .
 - $-(x_i,y_i)$ is a Support Vector, if and only if $\alpha_i > 0$.
 - If $\xi_i > 0$, then $\alpha_i = C$.
 - − If $0 \le \alpha_i < C$, then $\xi_i = 0$.
 - If $0 < \alpha_i < C$, then $y_i(x_i, w^* + b) = 1$.
 - SVM-light outputs α_i using the "-a" option

Dual SVM Optimization Problem

Primal Optimization Problem

minimize:
$$P(\vec{w}, b, \vec{\xi}) = \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
 subject to:
$$\forall_{i=1}^{n} : y_i [\vec{w} \cdot \vec{x}_i + b] \ge 1 - \xi_i$$

$$\forall_{i=1}^{n} : \xi_i \ge 0$$

Dual Optimization Problem

maximize:
$$D(\vec{\alpha}) = \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n y_i y_j \alpha_i \alpha_j (\vec{x}_i \cdot \vec{x}_j)$$
 subject to:
$$\sum_{i=1}^n y_i \alpha_i = 0$$

$$\forall_{i=1}^n : 0 \leq \alpha_i \leq C$$

• Theorem: If w^* is the solution of the Primal and α^* is the solution of the Dual, then

$$\vec{w}^* = \sum_{i=1}^n \alpha_i^* y_i \vec{x}_i$$

Leave-One-Out (i.e. n-fold CV)

- Training Set: $S = ((x_1, y_1), ..., (x_n, y_n))$
- Approach: Repeatedly leave one example out for testing.

Train on	Test on
$(x_2,y_2), (x_3,y_3), (x_4,y_4),, (x_n,y_n)$	(x_1,y_1)
$(x_1,y_1), (x_3,y_3), (x_4,y_4),, (x_n,y_n)$	(x_2,y_2)
$(x_1,y_1), (x_2,y_2), (x_4,y_4),, (x_n,y_n)$	(x_3,y_3)
	•••
$(x_1,y_1), (x_2,y_2), (x_3,y_3),, (x_{n-1},y_{n-1})$	(x_n, y_n)

 $\rightarrow h_i$ is the rule learned on $S \setminus \{(x_i, y_i)\}$

• Estimator:
$$Err_{loo}(A) = \frac{1}{n} \sum_{i=1}^{n} \Delta(h_i(x_i), y_i)$$

Question: Is there a cheaper way to compute this estimate?

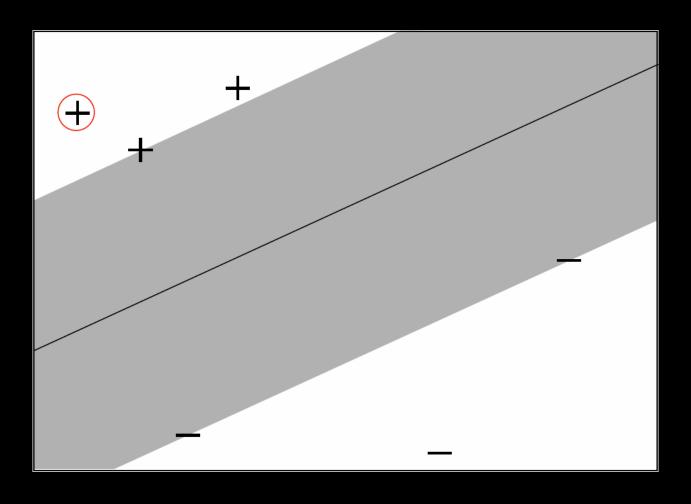
Necessary Condition for Leave-One-Out Error

- Lemma: For SVM, $[h_i(\vec{x}_i) \neq y_i] \Rightarrow [2\alpha_i R^2 + \xi_i \geq 1]$
- Input:
 - $-\alpha_i$ dual variable of example i
 - $-\xi_i$ slack variable of example i
 - $\|\vec{x}_i\| \le R$ bound on length
- Example:

Value of 2 α_i R ² + ξ_i	Leave-one-out Error?
0.0	Must be Correct
0.7	Must be Correct
3.5	Error
0.1	Must be Correct
1.3	Correct
•••	•••

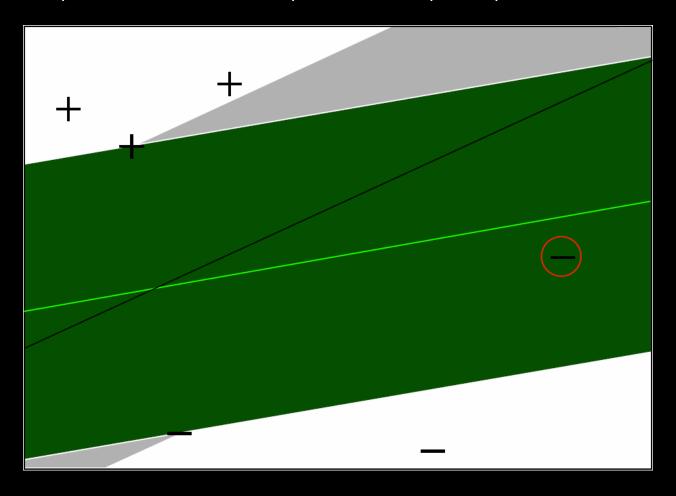
Case 1: Example is not SV

Criterion: $(\alpha_i = 0) \rightarrow (\xi_i = 0) \rightarrow (2 \alpha_i R^2 + \xi_i < 1) \rightarrow Correct$



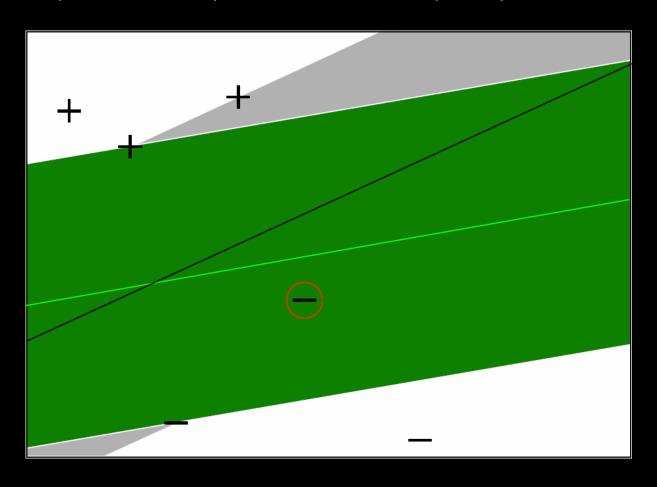
Case 2: Example is SV with Low Influence

Criterion: $(\alpha_i < 0.5/R^2 < C) \rightarrow (\xi_i = 0) \rightarrow (2\alpha_i R^2 + \xi_i < 1) \rightarrow Correct$



Case 3: Example has Small Training Error

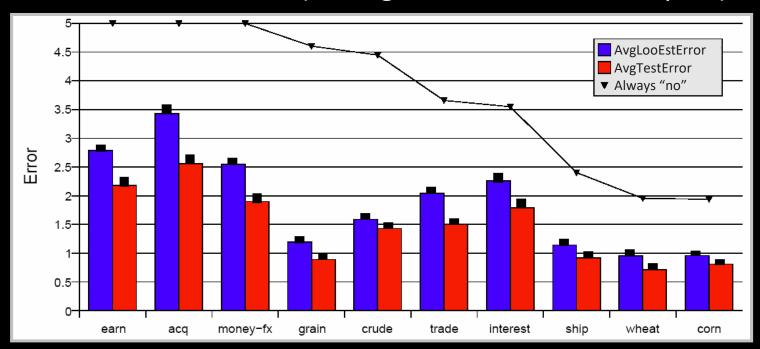
Criterion: $(\alpha_i = C)$ and $(\xi_i < 1-2CR^2) \rightarrow (2\alpha_i R^2 + \xi_i < 1) \rightarrow Correct$



Experiment: Reuters Text Classification

Experiment Setup

- 6451 Training Examples
- 6451 Test Examples to estimate true Prediction Error
- Comparison between Leave-One-Out upper bound and error on Test Set (average over 10 train/test splits)



Fast Leave-One-Out Estimation for SVMs

Lemma: Training errors are always Leave-One-Out Errors.

Algorithm:

- $(R,\alpha,\xi) = trainSVM(S_{train})$
- FOR (x_i, y_i) ∈ S_{train}
 - IF $\xi_i > 1$ THEN loo++;
 - ELSE IF (2 α_i R² + ξ_i < 1) THEN loo = loo;
 - ELSE trainSVM(S_{train} \ {(x_i,y_i)}) and test explicitly

Experiment:

Training Data	Retraining Steps (%)	CPU-Time (sec)
Reuters (n=6451)	0.58%	32.3
WebKB (n=2092)	20.42%	235.4
Ohsumed (n=10000)	2.56%	1132.3