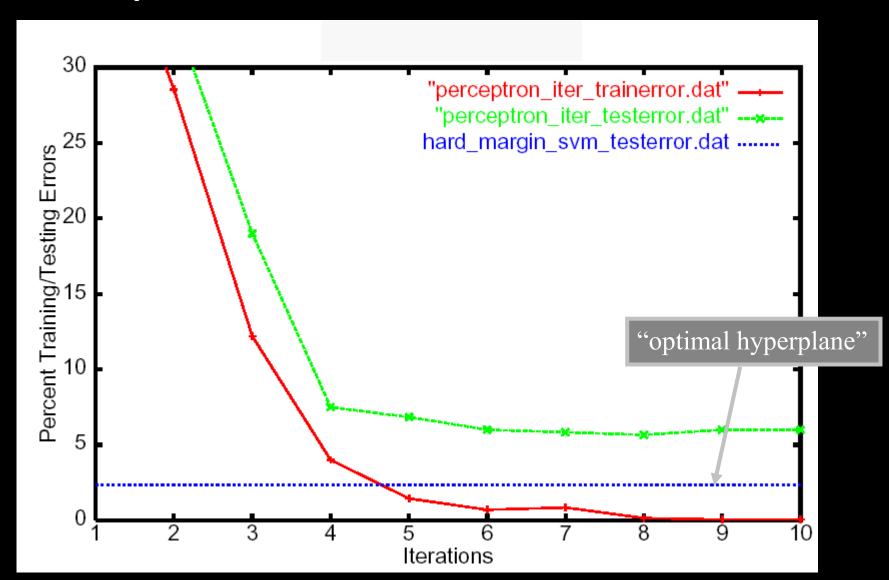
Support Vector Machines and Optimal Hyperplanes

CS6780 – Advanced Machine Learning Spring 2019

Thorsten Joachims Cornell University

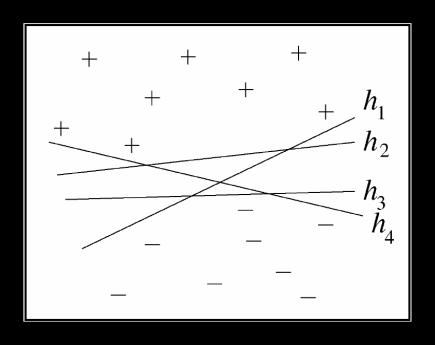
Reading: Murphy 14.5 Schoelkopf/Smola Chapter 5 (rest), Chapter 7.1-7.3, 7.5

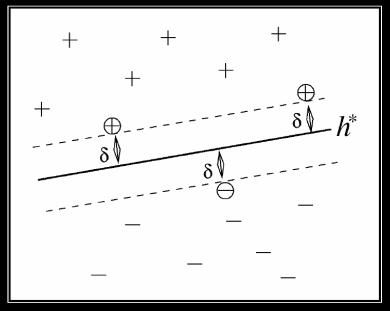
Example: Reuters Text Classification



Optimal Hyperplanes

- Assumption:
 - Training examples are linearly separable.





Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \mathbb{R}^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. For general \vec{w} , the term functional margin is used to indicate that the norm of \vec{w} is not necessarily 1.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

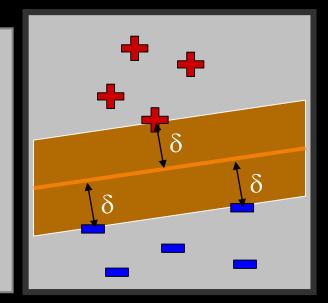
Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is $\delta = inf_{S \sim P(X,Y)} min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$

Hard-Margin Separation

Goal:

Find hyperplane with the largest distance to the

closest training examples.



- Support Vectors:
 - Examples with minimal distance (i.e. margin).

Vapnik Chervonenkis Dimension

 Definition: The VC-Dimension of H is equal to the maximum number d of examples that can be split into two sets in all 2^d ways using functions from H (shattering).

Generalization Error Bound: Infinite H, Non-Zero Error

- Setting
 - Sample of n labeled instances S
 - Learning Algorithm L using a hypothesis space H with VCDim(H)=d
 - ERM learner L returns hypothesis $\hat{h}=L(S)$ with lowest training error
- Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S of size n, with probability $(1-\delta)$ it holds that

$$Err_P(h_{\mathcal{L}(S)}) \le Err_S(h_{\mathcal{L}(S)}) + \sqrt{\frac{d\left(\ln\left(\frac{2n}{d}\right) + 1\right) - \ln\left(\frac{\delta}{4}\right)}{n}}$$

VC Dimension of Hyperplanes

- Theorem: The VC Dimension of unbiased hyperplanes over N features is N.
- Theorem: The VC Dimension of biased hyperplanes over N features is N+1.

VC Dimension of Margin Hyperplanes

Theorem: Unbiased linear classifiers H_X with $\|w\| = 1/\delta$ and $\max_i \|x_i\| \leq R$ and margin

$$\min_{i}|w\cdot x_{i}|=1$$

for a given set of instances $X = \{x_1, ..., x_k\}$, have VC Dimension

$$VCDim(H_X) \le \frac{R^2}{\delta^2}$$