Support Vector Machines and
Optimal Hyperplanes
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Reading: Murphy 14.5
Schoelkopf/Smola Chapter 5 (rest), Chapter 7.1-7.3, 7.5



Example: Reuters Text Classification

"perceptron_iter_trainerror.dat”" ——

hard_margin_svm_testerror.dat .-..-..
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Optimal Hyperplanes

* Assumption:

— Training examples are linearly separable.




Margin of a Linear Classifier




Hard-Margin Separation

e Goal:

— Find hyperplane with the largest distance to the
closest training examples.

* Support Vectors:
— Examples with minimal distance (i.e. margin).



Vapnik Chervonenkis Dimension

* Definition: The VC-Dimension of H is equal to
the maximum number d of examples that can
be split into two sets in all 29 ways using
functions from H (shattering).



Generalization Error Bound:
Infinite H, Non-Zero Error

* Setting
— Sample of n labeled instances S
— Learning Algorithm L using a hypothesis space H with VCDim(H)=d
— ERM learner L returns hypothesis h=L(S) with lowest training error

* Given hypothesis space H with VCDim(H) equal to d and an i.i.d. sample S
of size n, with probability (1-0) it holds that




VC Dimension of Hyperplanes

e Theorem: The VC Dimension of unbiased
hyperplanes over N features is N.

e Theorem: The VC Dimension of biased
hyperplanes over N features is N+1.



VC Dimension of
Margin Hyperplanes

Theorem: Unbiased linear classifiers Hy with
lw|| = 1/6 and max||x;|| < R and margin
|

min|w - x;| =1
l

for a given set of instances X = {x4, ..., xx },
have VC Dimension

R2
VeDim(Hy) < —



