Linear Classifiers and Perceptron

CS6780 - Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

Reading: Murphy 8.5.4 Cristianini/Shawe-Taylor Chapter 2-2.1.1

Example: Spam Filtering

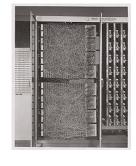
	viagra	learning	the	dating	nigeria	spam?
$\vec{x}_1 = ($						$y_1 = -1$
$\vec{x}_2 = ($						$y_2 = +1$
$\vec{x}_3 = ($						$y_3 = -1$

- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (-1) / Ham (+1)

Linear Classification Rules

- Hypotheses of the form
 - $\ \ \text{unbiased:} \ h_{\overrightarrow{w}}(\overrightarrow{x}) = \begin{cases} +1 & \overrightarrow{w} \cdot \overrightarrow{x} > 0 \\ -1 & \textit{else} \end{cases}$
 - biased: $h_{\overrightarrow{w},b}(\overrightarrow{x}) = \begin{cases} +1 & \overrightarrow{w} \cdot \overrightarrow{x} + b > 0 \\ -1 & else \end{cases}$
- Hypothesis space H
- $\begin{aligned} &- & H_{unblased} = \{ \ h_{\overrightarrow{w}} \colon \overrightarrow{w} \in \Re^N \} \\ &- & H_{blased} = \{ \ h_{\overrightarrow{w},b} \colon \overrightarrow{w} \in \Re^N, b \in \Re \} \\ &\text{Notation} \end{aligned}$
- Defining: $sign(a) = \begin{cases} +1 & a > 0 \\ -1 & else \end{cases}$
- $-h_{\overrightarrow{w}}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x})$
- $h_{\overrightarrow{w},b}(\overrightarrow{x}) = sign(\overrightarrow{w} \cdot \overrightarrow{x} + b)$

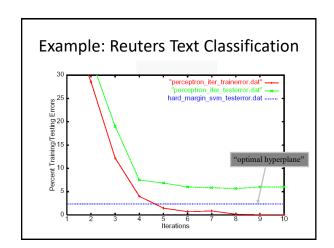
Rosenblatt's Perceptron



https://en.wikipedia.org/wiki/Perceptron

(Batch) Perceptron Algorithm

```
Input: S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \vec{x}_i \in \Re^N, y_i \in \{-1, 1\},
FOR i{=}1 TO n * IF y_i(\vec{w_k}\cdot\vec{x_i}) \leq 0 ### makes mistake \cdot \vec{w_{k+1}} = \vec{w_k} + y_i\vec{x_i}
                                                   Training Data:
```



Online Learning Model

- Initialize hypothesis $h \in H$
- · FOR i FROM 1 TO infinity
 - Receive x_i
 - Make prediction $\widehat{y}_i = h(x_i)$
 - Receive true label y_i
 - Record if prediction was correct (e.g., $\hat{y_i} = y_i$)
 - Update h
- → Goal: minimize number of mistakes.

(Online) Perceptron Algorithm ullet Input: $S = ((ec{x}_1, y_1), ..., (ec{x}_n, y_n))$, $ec{x}_i \in \Re^N$, $y_i \in \{-1, 1\}$ Algorithm:

Perceptron Mistake Bound

Theorem: For any sequence of training examples S = $((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n))$ with

$$R = \max ||\vec{x}_i||,$$

if there exists a weight vector \overrightarrow{w}_{opt} with $\left\|\overrightarrow{w}_{opt}\right\|=1$

$$y_i\left(\vec{w}_{opt}\cdot\vec{x}_i\right) \ge \delta > 0$$

for all $1 \le i \le n$, then the Perceptron makes at most

 $\frac{R^2}{\delta^2}$

mistakes.

Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x},y) with $\vec{x}\in\Re^N$ and $y\in\{-1,+1\}$ is $\delta=y(\vec{w}\cdot\vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is $\delta = \inf_{S \sim P(X,Y)} \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$