Linear Classifiers and Perceptron

CS6780 – Advanced Machine Learning Spring 2019

> Thorsten Joachims Cornell University

Reading: Murphy 8.5.4 Cristianini/Shawe-Taylor Chapter 2-2.1.1

Example: Spam Filtering

- Instance Space X:
 - Feature vector of word occurrences => binary features
 - N features (N typically > 50000)
- Target Concept c:
 - Spam (-1) / Ham (+1)

Linear Classification Rules

• Hypotheses of the form

- unbiased:
$$h_{\vec{w}}(\vec{x}) = \begin{cases} +1 & \vec{w} \cdot \vec{x} > 0 \\ -1 & else \end{cases}$$

- biased:
$$h_{\vec{w},b}(\vec{x}) = \begin{cases} +1 & \vec{w} \cdot \vec{x} + b > 0\\ -1 & else \end{cases}$$

- Parameter vector \vec{w} , scalar b
- Hypothesis space H

$$- H_{unbiased} = \{ h_{\overrightarrow{w}} : \overrightarrow{w} \in \Re^N \}$$

- $H_{biased} = \{ h_{\overrightarrow{w},b} \colon \overrightarrow{w} \in \Re^N, b \in \Re \}$
- Notation

- Defining:
$$sign(a) = \begin{cases} +1 & a > 0 \\ -1 & else \end{cases}$$

 $- h_{\vec{w}}(\vec{x}) = sign(\vec{w} \cdot \vec{x})$

$$- h_{\vec{w},b}(\vec{x}) = sign(\vec{w} \cdot \vec{x} + b)$$

Rosenblatt's Perceptron

https://en.wikipedia.org/wiki/Perceptron

(Batch) Perceptron Algorithm

Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}, \ I \in [1, 2, ..]$

Algorithm:

•
$$\vec{w}_0 = \vec{0}, \ k = 0$$

• repeat

- FOR i=1 TO n* IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0 \# \# \#$ makes mistake $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$ Training Data: $\cdot k = k + 1$ x_1 $x_{\mathcal{I}}$ |y|* ENDIF $\vec{x_1} = (1 \ 2)$ $y_1 = 1$ $\vec{x}_2 = (2 \ 1)$ - ENDFOR $y_2 = 1$ $\vec{x}_3 = (-1 - 1)$ $y_3 \equiv -1$ until I iterations reached $\vec{x}_4 = ($ -1 1) $y_3 = -1$

Example: Reuters Text Classification

Online Learning Model

- Initialize hypothesis $h \in H$
- FOR i FROM 1 TO infinity
 - Receive x_i
 - Make prediction $\hat{y}_i = h(x_i)$
 - Receive true label y_i
 - Record if prediction was correct (e.g., $\hat{y}_i = y_i$)

- Update h

\rightarrow Goal: minimize number of mistakes.

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}$
- Algorithm:
 - $\vec{w}_0 = \vec{0}, \ k = 0$
 - FOR i=1 TO n
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0 \# \# \#$ makes mistake
 - $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - $\cdot k = k + 1$
 - * ENDIF
 - ENDFOR
- Output: \vec{w}_k

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)$ with $R = \max \|\vec{x}_i\|$,

if there exists a weight vector \vec{w}_{opt} with $\left\| \vec{w}_{opt} \right\| = 1$ and

$$y_i\left(\vec{w}_{opt}\cdot\vec{x}_i\right)\geq\delta>0$$

for all $1 \leq i \leq n$, then the Perceptron makes at most

 $\frac{R^2}{\delta^2}$ mistakes.

Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \Re^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. For general \vec{w} , the term functional margin is used to indicate that the norm of \vec{w} is not necessarily 1.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is

 $\delta = \inf_{S \sim P(X,Y)} \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$