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Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised 
Classification Learning Algorithms. Neural Computation, 10 (7) 1895-1924. 

(http://sci2s.ugr.es/keel/pdf/algorithm/articulo/dietterich1998.pdf

Supervised Batch Learning

• Definition: A particular Instance of a Supervised 
Learning Problem is described by a probability 
distribution 𝑃 𝑋, 𝑌 .

• Definition: Any Example 𝑋𝑖 , 𝑌𝑖 is a random variable 
that is independently identically distributed (i.i.d.) 
according to 𝑃 𝑋, 𝑌 .

Real-world Process
P(X,Y)

(x1,y1), …, (xn,yn) Learner (xn+1,yn+1), …
Train Sample Strain Test Sample StesthStrain

Training / Validation / Test Sample

• Definition: A Training / Test / Validation 

Sample 𝑆 = (𝑥1, 𝑦1 , … , 𝑥𝑛 , 𝑦𝑛 ) is drawn 

i.i.d. from 𝑃 𝑋, 𝑌 . 

𝑃 𝑆 = 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 =ෑ

𝑖=1

𝑛

𝑃 𝑋𝑖 = 𝑥𝑖 , 𝑌𝑖 = 𝑦𝑖

Risk

• Definition: The Risk / Prediction Error / True 
Error / Generalization Error of a hypothesis ℎ
for a learning task 𝑃 𝑋, 𝑌 is 

• Definition: The Loss Function Δ 𝑦, ො𝑦 ∈ ℜ
measures the quality of prediction ො𝑦 if the 
true label is 𝑦.

𝐸𝑟𝑟𝑃 ℎ =෍

𝑥,𝑦

Δ 𝑦, ℎ 𝑥 𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

Bayes Risk

• Given knowledge of P(X,Y), the true error of 
the best possible h is 

for the 0/1 loss.

𝐸𝑟𝑟𝑃 ℎ𝑏𝑎𝑦𝑒𝑠 = 𝐸𝑥~𝑃(𝑋)[min
𝑦∈𝑌

1 − 𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ]

Three Roadmaps for 
Designing ML Methods

• Generative Model: 

 Learn 𝑃 𝑋, 𝑌 from training sample, then h via 
Bayes Decision Rule.

• Discriminative Conditional Model:

 Learn 𝑃 𝑌|𝑋 from training sample, then h via 
Bayes Decision Rule.

• Discriminative ERM Model:

 Learn h directly from training sample. 

http://sci2s.ugr.es/keel/pdf/algorithm/articulo/dietterich1998.pdf
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Empirical Risk

• Definition: The Empirical Risk / Error of 
hypothesis ℎ on sample

𝑆 = (𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 )

is

𝐸𝑟𝑟𝑆 ℎ =
1

𝑛
෍

𝑖=1

𝑛

Δ 𝑦𝑖 , ℎ 𝑥𝑖

Empirical Risk Minimization

• Definition [ERM Principle]: Given a training 
sample 𝑆 = ( 𝑥1, 𝑦1 , … , (𝑥𝑛, 𝑦𝑛) and a 
hypothesis space 𝐻, select the rule ℎ𝐸𝑅𝑀 ∈ 𝐻
that minimizes the empirical risk (i.e. training 
error) on 𝑆

ℎ𝐸𝑅𝑀 = min
ℎ∈𝐻

1

𝑛
෍

𝑖=1

𝑛

Δ(𝑦𝑖 , ℎ(𝑦𝑖))

Supervised Batch Learning
Overview

•Goal: Find h with small prediction error ErrP(h) 
with respect to P(X,Y).

Real-world Process
P(X,Y)

(x1,y1), …, (xn,yn) Learner (xn+1,yn+1), …
Train Sample Strain Test Sample Stest

drawn i.i.d. drawn i.i.d.

hStrain

• Training Error: Error ErrStrain
(h) on training sample.

• Test Error: Error ErrStest
(h) on test sample is an estimate 

of ErrP(h) .

MODEL SELECTION

Overfitting

• Note: Accuracy = 1.0-Error                                                                   [Mitchell]

Occam’s Razor

Prefer the simplest hypothesis that fits the data.

Sandmännchen: Jan & Henry and the essence of 
Occam’s Razor.

fit 
data
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Decision Tree Example: revisited

correct

presentation

original
no

yes no

no

yes

complete

partial

guessing

yes
no

clear
unclear

Controlling Overfitting
in Decision Trees

• Early Stopping: Stop growing the tree and 
introduce leaf when splitting no longer 
“reliable”.
– Restrict size of tree (e.g., number of nodes, depth)

– Minimum number of examples in node

– Threshold on splitting criterion

• Post Pruning: Grow full tree, then simplify.
– Reduced-error tree pruning

– Rule post-pruning

Model Selection via Validation Sample

• Training: Run learning algorithm m times (e.g. different parameters).
• Validation Error: Errors ErrSval

(ĥi) is an estimates of ErrP(ĥi) for each hi.
• Selection: Use hi with min ErrSval

(ĥi) for prediction on test examples.

Real-world Process

Learner 1
Train Sample 

Strain’

Val. Sample 
Sval

split 
randomly

split 
randomly

ĥ1

Strain’

Train Sample 
Strain

drawn i.i.d.

Learner m

…

ĥk

ĥ

Test Sample
Stest

drawn i.i.d.

Reduced-Error Pruning

Text Classification Example
“Corporate Acquisitions” Results

• Unpruned Tree (ID3 Algorithm):
– Size: 437 nodes Training Error: 0.0% Test Error: 11.0%

• Early Stopping Tree (ID3 Algorithm):
– Size: 299 nodes Training Error: 2.6% Test Error: 9.8%

• Reduced-Error Pruning (C4.5 Algorithm):
– Size: 167 nodes Training Error: 4.0% Test Error: 10.8%

• Rule Post-Pruning (C4.5 Algorithm):
– Size: 164 tests Training Error: 3.1% Test Error: 10.3%

– Examples of rules
• IF vs = 1 THEN - [99.4%]

• IF vs = 0 & export = 0 & takeover = 1 THEN +  [93.6%]

MODEL ASSESSMENT
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Evaluating Learned 
Hypotheses

• Goal: Find h with small prediction error ErrP(h) over P(X,Y).

• Question:  How good is ErrP(ĥ) of ĥ found on training sample Strain.

• Training Error: Error ErrStrain
(ĥ) on training sample.

• Test Error: Error ErrStest
(ĥ) is an estimate of ErrP(ĥ) .

Real-world Process

(x1,y1), …, (xn,yn) Learner 
(incl. ModSel)

(x1,y1),…(xk,yk)
Training Sample Strain Test Sample Stest

split randomly split randomly

ĥStrain

Sample S

drawn i.i.d.

What is the True Error of a 
Hypothesis?

• Given
– Sample of labeled instances S
– Learning Algorithm A

• Setup
– Partition S randomly into Strain and Stest

– Train learning algorithm A on Strain, result is ĥ.
– Apply ĥ to Stest and compare predictions against true labels.

• Test
– Error on test sample ErrStest

(ĥ) is estimate of true error ErrP(ĥ).
– Compute confidence interval.

(x1,y1), …, (xn,yn) Learner (x1,y1),…(xk,yk)
Training Sample Strain Test Sample StestStrain ĥ

Binomial Distribution

• The probability of observing x heads (i.e. errors) in a 
sample of n independent coin tosses (i.e. examples), 
where in each toss the probability of heads (i.e. making 
an error) is p, is

• Normal approximation: For np(1-p)>=5 the binomial can 
be approximated by the normal distribution with
– Expected value: E(X)=np Variance: Var(X)=np(1-p)
– With probability , the observation x falls in the interval

 50% 68% 80% 90% 95% 98% 99%

z 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Is Rule h1 More Accurate than h2? 
• Given

– Sample of labeled instances S

– Learning Algorithms A1 and A2

• Setup

– Partition S randomly into Strain and Stest

– Train learning algorithms A1 and A2 on Strain, result are ĥ1 and ĥ2.

– Apply ĥ1 and ĥ2 to Stest and compute ErrStest
(ĥ1) and ErrStest

(ĥ2).

• Test

– Decide, if ErrP(ĥ1)  ErrP(ĥ2)?

– Null Hypothesis: ErrStest
(ĥ1) and ErrStest

(ĥ2) come from binomial 
distributions with same p.

 Binomial Sign Test (McNemar’s Test)

Is Learning Algorithm 
A1 better than A2?

• Given
– k samples S1 … Sk of labeled instances, all i.i.d. from P(X,Y). 

– Learning Algorithms A1 and A2

• Setup
– For i from 1 to k

• Partition Si randomly into Strain and Stest

• Train learning algorithms A1 and A2 on Strain, result are ĥ1 and ĥ2.

• Apply ĥ1 and ĥ2 to Stest and compute ErrStest
(ĥ1) and ErrStest

(ĥ2).

• Test
– Decide, if ES(ErrP(A1(Strain)))  ES(ErrP(A2(Strain)))?

– Null Hypothesis: ErrStest
(A1(Strain)) and ErrStest

(A2(Strain)) come 
from same distribution over samples S.
 t-Test or Wilcoxon Signed-Rank Test 

Approximation via 
K-fold Cross Validation

• Given
– Sample of labeled instances S

– Learning Algorithms A1 and A2

• Compute
– Randomly partition S into k equally sized subsets S1 … Sk

– For i from 1 to k
• Train A1 and A2 on S1 … Si-1 Si+1 ….Sk and get ĥ1 and ĥ2.

• Apply ĥ1 and ĥ2 to Si and compute ErrSi
(ĥ1) and ErrSi

(ĥ2).

• Estimate
– Average ErrSi

(ĥ1) is estimate of ES(ErrP(A1(Strain))) 

– Average ErrSi
(ĥ2) is estimate of ES(ErrP(A2(Strain))) 

– Count how often ErrSi
(ĥ1)>ErrSi

(ĥ2) and ErrSi
(ĥ1)<ErrSi

(ĥ2)


