Empirical Risk Minimization, Model Selection, and Model Assessment

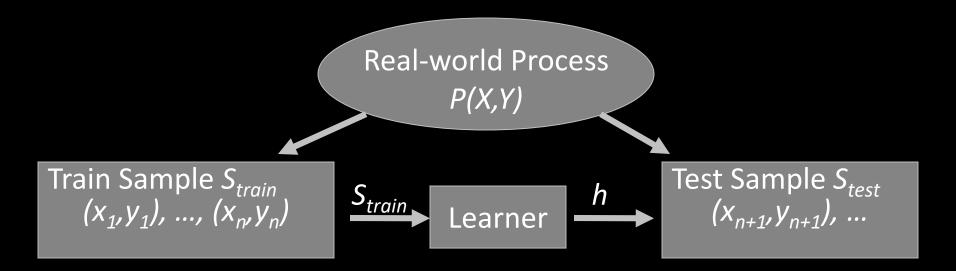
CS6780 – Advanced Machine Learning Spring 2019

Thorsten Joachims Cornell University

Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1

Dietterich, T. G., (1998). Approximate Statistical Tests for Comparing Supervised Classification Learning Algorithms. Neural Computation, 10 (7) 1895-1924. (http://sci2s.ugr.es/keel/pdf/algorithm/articulo/dietterich1998.pdf

Supervised Batch Learning



- Definition: A particular Instance of a Supervised Learning Problem is described by a probability distribution P(X,Y).
- Definition: Any Example (X_i, Y_i) is a random variable that is independently identically distributed (i.i.d.) according to P(X, Y).

Training / Validation / Test Sample

• Definition: A Training / Test / Validation Sample $S = ((x_1, y_1), ..., (x_n, y_n))$ is drawn i.i.d. from P(X, Y).

$$P(S = ((x_1, y_1), ..., (x_n, y_n))) = \prod_{i=1}^{n} P(X_i = x_i, Y_i = y_i)$$

Risk

• Definition: The Risk / Prediction Error / True Error / Generalization Error of a hypothesis h for a learning task P(X,Y) is

$$Err_P(h) = \sum_{x,y} \Delta(y,h(x)) P(X=x,Y=y)$$

• Definition: The Loss Function $\Delta(y, \hat{y}) \in \Re$ measures the quality of prediction \hat{y} if the true label is y.

Bayes Risk

 Given knowledge of P(X,Y), the true error of the best possible h is

$$Err_P(h_{bayes}) = E_{x \sim P(X)} \left[\min_{y \in Y} \left(1 - P(Y = y | X = x) \right) \right]$$

for the 0/1 loss.

Three Roadmaps for Designing ML Methods

- Generative Model:
 - \rightarrow Learn P(X,Y) from training sample, then h via Bayes Decision Rule.
- Discriminative Conditional Model:
 - \rightarrow Learn P(Y|X) from training sample, then h via Bayes Decision Rule.
- Discriminative ERM Model:
 - → Learn h directly from training sample.

Empirical Risk

• Definition: The Empirical Risk / Error of hypothesis h on sample

$$S = ((x_1, y_1), ..., (x_n, y_n))$$

is

$$Err_{S}(h) = \frac{1}{n} \sum_{i=1}^{n} \Delta(y_{i}, h(x_{i}))$$

Empirical Risk Minimization

• Definition [ERM Principle]: Given a training sample $S = ((x_1, y_1), ..., (x_n, y_n))$ and a hypothesis space H, select the rule $h^{ERM} \in H$ that minimizes the empirical risk (i.e. training error) on S

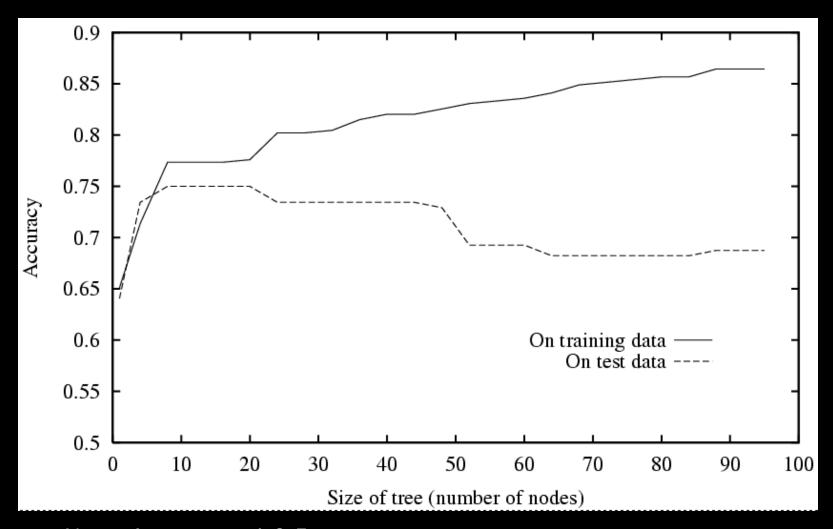
$$h^{ERM} = \min_{h \in H} \left[\frac{1}{n} \sum_{i=1}^{n} \Delta(y_i, h(y_i)) \right]$$

Supervised Batch Learning Real-world Process P(X,Y)drawn i.i.d. Train Sample S_{train} $(x_1,y_1), ..., (x_n,y_n)$ S_{train} Learner MTest Sample S_{test} $(x_{n+1},y_{n+1}), ...$

- •Goal: Find h with small prediction error $Err_p(h)$ with respect to P(X,Y).
- Training Error: Error $Err_{S_{train}}(h)$ on training sample.
- Test Error: Error $Err_{S_{test}}(h)$ on test sample is an estimate of $Err_{P}(h)$.

MODEL SELECTION

Overfitting



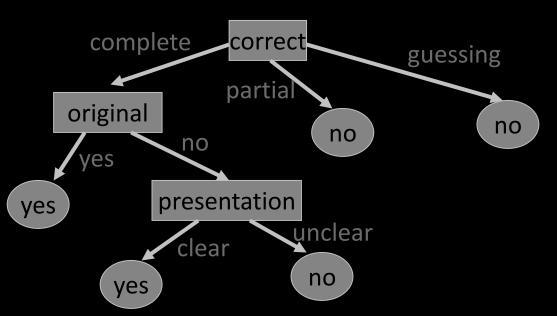
• Note: Accuracy = 1.0-Error

Occam's Razor

Prefer the simplest hypothesis that fits the data.

Sandmännchen: Jan & Henry and the essence of Occam's Razor.

Decision Tree Example: revisited

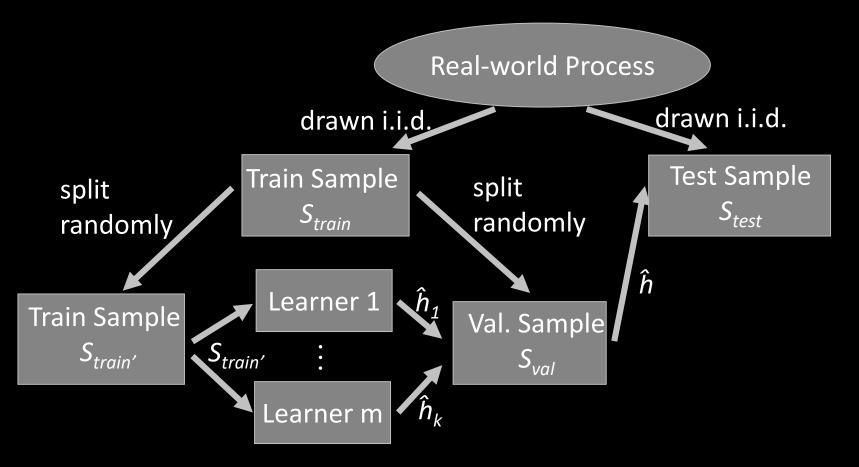


	CO P	A^+
$\vec{x}_1 = ($	c, y, c	$y_1 = +1$
$ec{x}_2 = 0$	c, n, u)	$y_2 = -1$
$ \vec{x}_3 = 0 $	c, y, u)	$y_3 = +1$
$ \vec{x}_4 = ($	(c, n, c)	$ y_4 = +1 $
$ \vec{x}_5 = 0$	p, y, c)	$y_5 = -1$
		$y_6 = -1$
$ \vec{x}_7 = ($	(c, y, c)	$ y_7=+1 $
$ \vec{x}_8 = ($	c, y, u)	$y_8 = +1$
$\vec{x}_9 = ($	p, y, c)	$y_9 = -1$
$\vec{x}_{10} = ($	c, y, c	$y_{10} = +1$

Controlling Overfitting in Decision Trees

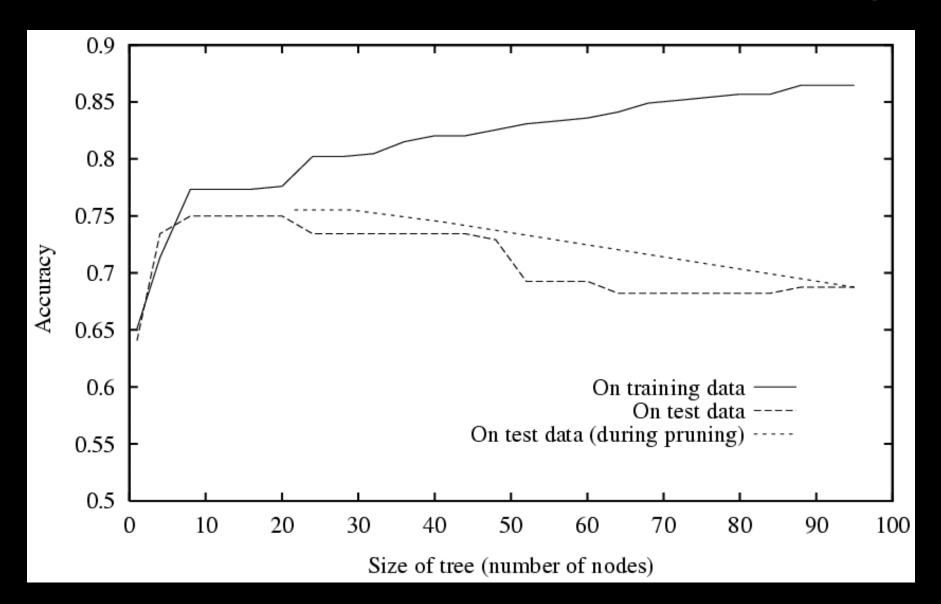
- Early Stopping: Stop growing the tree and introduce leaf when splitting no longer "reliable".
 - Restrict size of tree (e.g., number of nodes, depth)
 - Minimum number of examples in node
 - Threshold on splitting criterion
- Post Pruning: Grow full tree, then simplify.
 - Reduced-error tree pruning
 - Rule post-pruning

Model Selection via Validation Sample



- Training: Run learning algorithm m times (e.g. different parameters).
- Validation Error: Errors $Err_{S_{val}}(\hat{h}_i)$ is an estimates of $Err_{P}(\hat{h}_i)$ for each h_i .
- **Selection**: Use h_i with min $Err_{S_{y,al}}(\hat{h_i})$ for prediction on test examples.

Reduced-Error Pruning



Text Classification Example "Corporate Acquisitions" Results

- Unpruned Tree (ID3 Algorithm):
 - Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
- Early Stopping Tree (ID3 Algorithm):
 - Size: 299 nodes Training Error: 2.6% Test Error: 9.8%
- Reduced-Error Pruning (C4.5 Algorithm):
 - Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
- Rule Post-Pruning (C4.5 Algorithm):
 - Size: 164 tests Training Error: 3.1% Test Error: 10.3%
 - Examples of rules
 - IF vs = 1 THEN [99.4%]
 - IF vs = 0 & export = 0 & takeover = 1 THEN + [93.6%]

MODEL ASSESSMENT

Evaluating Learned Hypotheses Real-world Process drawn i.i.d. split randomly split randomly Sample S Training Sample S_{train} Test Sample S_{test} S_{train} $(x_1, y_1), ... (x_k, y_k)$ $(x_1, y_1), ..., (x_n, y_n)$ (incl. ModSel)

- Goal: Find h with small prediction error $Err_p(h)$ over P(X,Y).
- Question: How good is $\overline{Err_p(\hat{h})}$ of \hat{h} found on training sample S_{train} .
- Training Error: Error $Err_{S_{train}}(\hat{h})$ on training sample.
- **Test Error:** Error $Err_{S_{test}}(\hat{h})$ is an estimate of $Err_{p}(\hat{h})$.

What is the True Error of a Hypothesis?

Given

- Sample of labeled instances S
- Learning Algorithm A

Setup

- Partition S randomly into S_{train} and S_{test}
- Train learning algorithm A on S_{train} , result is \hat{h} .
- Apply \hat{h} to S_{test} and compare predictions against true labels.

Test

- Error on test sample $Err_{S_{test}}(\hat{h})$ is estimate of true error $Err_{P}(\hat{h})$.
- Compute confidence interval.

Training Sample
$$S_{train}$$
 $(x_1, y_1), ..., (x_n, y_n)$

Learner

 \hat{h}
 $(x_1, y_1), ..., (x_k, y_k)$

Binomial Distribution

 The probability of observing x heads (i.e. errors) in a sample of n independent coin tosses (i.e. examples), where in each toss the probability of heads (i.e. making an error) is p, is

$$P(X = x|p, n) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

- Normal approximation: For np(1-p)>=5 the binomial can be approximated by the normal distribution with
 - Expected value: E(X)=np Variance: Var(X)=np(1-p)
 - With probability δ , the observation x falls in the interval

$$E(X) \pm z_{\delta} \sqrt{Var(X)}$$

δ	50%	68%	80%	90%	95%	98%	99%
z_δ	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Is Rule h₁ More Accurate than h₂?

Given

- Sample of labeled instances S
- Learning Algorithms A₁ and A₂

Setup

- Partition S randomly into S_{train} and S_{test}
- Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
- Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.

Test

- Decide, if $Err_P(\hat{h}_1) \neq Err_P(\hat{h}_2)$?
- Null Hypothesis: $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$ come from binomial distributions with same p.
 - → Binomial Sign Test (McNemar's Test)

Is Learning Algorithm A_1 better than A_2 ?

Given

- k samples $S_1 \dots S_k$ of labeled instances, all i.i.d. from P(X,Y).
- Learning Algorithms A_1 and A_2

Setup

- For *i* from 1 to *k*
 - Partition S_i randomly into S_{train} and S_{test}
 - Train learning algorithms A_1 and A_2 on S_{train} , result are \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_{test} and compute $Err_{S_{test}}(\hat{h}_1)$ and $Err_{S_{test}}(\hat{h}_2)$.

Test

- Decide, if $E_S(Err_P(A_1(S_{train}))) \neq E_S(Err_P(A_2(S_{train})))$?
- Null Hypothesis: $Err_{S_{test}}(A_1(S_{train}))$ and $Err_{S_{test}}(A_2(S_{train}))$ come from same distribution over samples S.
 - → t-Test or Wilcoxon Signed-Rank Test

Approximation via K-fold Cross Validation

Given

- Sample of labeled instances S
- Learning Algorithms A_1 and A_2

Compute

- Randomly partition S into k equally sized subsets $S_1 \dots S_k$
- For *i* from 1 to *k*
 - Train A_1 and A_2 on $S_1 \dots S_{i-1} S_{i+1} \dots S_k$ and get \hat{h}_1 and \hat{h}_2 .
 - Apply \hat{h}_1 and \hat{h}_2 to S_i and compute $Err_{S_i}(\hat{h}_1)$ and $Err_{S_i}(\hat{h}_2)$.

Estimate

- Average $Err_{S_i}(\hat{h}_1)$ is estimate of $E_S(Err_P(A_1(S_{train})))$
- Average $Err_{S_i}(\hat{h}_2)$ is estimate of $E_S(Err_P(A_2(S_{train})))$
- Count how often $Err_{S_i}(\hat{h}_1) > Err_{S_i}(\hat{h}_2)$ and $Err_{S_i}(\hat{h}_1) < Err_{S_i}(\hat{h}_2)$