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Supervised Batch Learning

* Definition: A particular Instance of a Supervised
Learning Problem is described by a probability
distribution P(X,Y).

 Definition: Any Example (X;,Y;) is a random variable
that is independently identically distributed (i.i.d.)
accordingto P(X,Y).




Training / Validation / Test Sample
* Definition: A Training / Test / Validation

Sample § = ((xl,yl), oo, (X, Y1) is drawn
i.i.d. from P(X,Y).

P (S = (x5, 1), e, (G, yn))) = HP(Xi =%, Y; = ¥i)
=1



Risk

e Definition: The Risk / Prediction Error / True
Error / Generalization Error of a hypothesis h
for a learning task P(X,Y) is

Errp(h) = 2 A(y,h(x)) P(X = x,Y = y)
X,y

* Definition: The Loss Function A(y,y) € R
measures the quality of prediction y if the
true label is y.



Bayes Risk

* Given knowledge of P(X,Y), the true error of
the best possible his

Errp (hbayes) = Ex-px) [glellrfl(l —PY =ylX = X))]

for the 0/1 loss.



Three Roadmaps for
Designing ML Methods

e Generative Model:

- Learn P(X,Y) from training sample, then h via
Bayes Decision Rule.

e Discriminative Conditional Model:

- Learn P(Y|X) from training sample, then h via
Bayes Decision Rule.

e Discriminative ERM Model:

— Learn h directly from training sample.



Empirical Risk

* Definition: The Empirical Risk / Error of
hypothesis h on sample

S = ((x1; Y1): ey (X, Yn))
IS

1 n
Errs(h) = EE A()’i' h(xi))
i=1



Empirical Risk Minimization

* Definition [ERM Principle]: Given a training

Sample S = ((xl) yl)) re ) (xn: :Vn) and a
hypothesis space H, select the rule h*fM € H

that minimizes the empirical risk (i.e. training
error) on S

RERM = min [—2 Ay h())

heH |n




Supervised Batch Learning

Overview
drawn i.i.d. drawn i.i.d.
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MODEL SELECTION



Overfitting
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* Note: Accuracy = 1.0-Error [Mitchell]




Occam’s Razor

Prefer the simplest hypothesis that fits the data.

Sandmannchen: Jan & Henry and the essence of
Occam’s Razor.




Decision Tree Example: revisited

complete guessing
partia
original
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Controlling Overfitting

In Decision Trees

* Early Stopping: Stop growing the tree and
introduce leaf when splitting no longer
“reliable”.

— Restrict size of tree (e.g., number of nodes, depth)
— Minimum number of examples in node
— Threshold on splitting criterion

* Post Pruning: Grow full tree, then simplify.
— Reduced-error tree pruning
— Rule post-pruning



Model Selection via Validation Sample
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Text Classification Example

“Corporate Acquisitions” Results

Unpruned Tree (ID3 Algorithm):
— Size: 437 nodes Training Error: 0.0% Test Error: 11.0%

Early Stopping Tree (ID3 Algorithm):
— Size: 299 nodes Training Error: 2.6% Test Error: 9.8%

Reduced-Error Pruning (C4.5 Algorithm):
— Size: 167 nodes Training Error: 4.0% Test Error: 10.8%

Rule Post-Pruning (C4.5 Algorithm):
— Size: 164 tests Training Error: 3.1% Test Error: 10.3%

— Examples of rules
e |Fvs=1THEN - [99.4%]
 |[Fvs=0 & export =0 & takeover =1 THEN + [93.6%]



MODEL ASSESSMENT



Evaluating Learned
Hypotheses

drawn i.i.d.

split randomly split randomly



What is the True Error of a
Hypothesis?

* @Given
— Sample of labeled instances S
— Learning Algorithm A
* Setup
— Partition S randomly into S,,;,, and S
— Train learning algorithm Aon S
— ApplyhtoS
* Test
— Error on test sample Errstest(h) is estimate of true error Err,(h).
— Compute confidence interval.

= - | -

test R
wrainy FESUIt is h.

test aNd compare predictions against true labels.




Binomial Distribution

* The probability of observing x heads (i.e. errors) in a
sample of n independent coin tosses (i.e. examples),

where in each toss the probability of heads (i.e. making
an error) is p, is

 Normal approximation: For np(1-p)>=5 the binomial can
be approximated by the normal distribution with
— Expected value: E(X)=np Variance: Var(X)=np(1-p)
— With probability o, the observation x falls in the interval




Is Rule h, More Accurate than h,?

* Given
— Sample of labeled instances S
— Learning Algorithms A; and A,
* Setup
— Partition S randomly into S.. . and S

— Train learning algorithms A, and A, on S

train test

wains FESUIt @re h; and h,,.

— Apply h; and h, to S, and compute Errs__(h;) and Errg__(h,).
* Test
— Decide, if Erry(h,) # Errp(h,)?

— Null Hypothesis: Errg _(h,) and Err,__(h,) come from binomial
distributions with same p.

— Binomial Sign Test (McNemar’s Test)



Is Learning Algorithm
+ Given A, better than A,?

— ksamples S, ... S, of labeled instances, all i.i.d. from P(X.Y).
— Learning Algorithms A, and A,

* Setup

— Forjfrom 1tok
* Partition S;randomly into S,,,;,, and S
* Train learning algorithms A, and A, on S, .., result are h, and h,.
* Apply h; and h, to S, and compute Errs,__(h;) and Err,__(h,).

e Test
— Decide, if E(Errp(A(S,,,i))) ZEJErro(Ax(S,,in)))?

— Null Hypothesis: Errg _(A(Syqin)) and Errg,  (Ay(S
from same distribution over samples S.

- t-Test or Wilcoxon Signed-Rank Test

test

train) ) come



Approximation via
K-fold Cross Validation

* Given
— Sample of labeled instances S
— Learning Algorithms A; and A,

* Compute
— Randomly partition S into k equally sized subsets S, ... S,
— Forifrom 1to k
« TrainA,andA,onS,...S.;S..;..S, and get h, and h,.
* Apply h; and h, to S;and compute Errg(h,) and Errg(h,).
* Estimate
— Average Errsi(livl) is estimate of E¢(Errp(A,(S,,.in)))
— Average Errg(h;) is estiAmate of I:A'S(ErrP(A Z(Sth,-n))) )
— Count how often Errg(h,)>Errg(h,) and Errg(h,)<Errs(h;)
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