
Yoram Singer
Machine Intelligence Center
Google Research

Efficient Online Learning,
Deterministic, and Stochastic
Optimization

1

CS6780: Advanced Machine Learning, Cornell

• To predict the MID of an entity a large number of
boolean predicates are built and combined

• Most predicates evaluate to be false for most examples

• Example: [ωt = President-Name] & [ωt+1=“White-House”]

High Dimensional Sparse Data

2

• To predict the MID of an entity a large number of
boolean predicates are built and combined

• Most predicates evaluate to be false for most examples

• Example: [ωt = President-Name] & [ωt+1=“White-House”]

High Dimensional Sparse Data

x � {0, 1}n (0, 0, 1, 0, 1, 0, . . . , 0, 0, 1, 0)

2

• To predict the MID of an entity a large number of
boolean predicates are built and combined

• Most predicates evaluate to be false for most examples

• Example: [ωt = President-Name] & [ωt+1=“White-House”]

High Dimensional Sparse Data

x � {0, 1}n (0, 0, 1, 0, 1, 0, . . . , 0, 0, 1, 0)

2

How to use the predicates in order
to make accurate predictions ?

?

• To predict the MID of an entity a large number of
boolean predicates are built and combined

• Most predicates evaluate to be false for most examples

• Example: [ωt = President-Name] & [ωt+1=“White-House”]

High Dimensional Sparse Data

x � {0, 1}n (0, 0, 1, 0, 1, 0, . . . , 0, 0, 1, 0)

2

Which predicates are “important” for
performing accurate predictions?

?

Example

Setting in a Picture

f1 f2 f3 f4 f5 f6 f7 f8
0 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 1 0 1
0 1 0 0 0 0 1 0

(e.g. MID=“Obama”) 

Target Y

1

1

0
0

0
0
0

INSTANTIATED PREDICATES == FEATURES

1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 1

 X1

 X2

 X7

3

Example

Setting in a Picture

f1 f2 f3 f4 f5 f6 f7 f8
0 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 1 0 1
0 1 0 0 0 0 1 0

(e.g. MID=“Obama”) 

Target Y

1

1

0
0

0
0
0

FREQUENT BUT 
 NON-INFORMATIVE

INSTANTIATED PREDICATES == FEATURES

1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 1

 X1

 X2

 X7

3

Example

Setting in a Picture

f1 f2 f3 f4 f5 f6 f7 f8
0 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 1 0 1
0 1 0 0 0 0 1 0

(e.g. MID=“Obama”) 

Target Y

1

1

0
0

0
0
0

FREQUENT BUT 
 NON-INFORMATIVE

INFREQUENT YET  
 INFORMATIVE

INSTANTIATED PREDICATES == FEATURES

1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 1

 X1

 X2

 X7

3

Example

Setting in a Picture

f1 f2 f3 f4 f5 f6 f7 f8
0 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 1 0 1
0 1 0 0 0 0 1 0

(e.g. MID=“Obama”) 

Target Y

1

1

0
0

0
0
0

FREQUENT BUT 
 NON-INFORMATIVE

INFREQUENT YET  
 INFORMATIVE

INSTANTIATED PREDICATES == FEATURES

1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 1

TRUE ALSO FOR REAL
VALUED FEATURES

 X1

 X2

 X7

3

Challenges

4

Challenges
• Large amounts of high dimensional sparse data:

• Computational time should scale with #“1” features

• Cannot process entire dataset “all at once”

4

Challenges
• Large amounts of high dimensional sparse data:

• Computational time should scale with #“1” features

• Cannot process entire dataset “all at once”

• Many frequent features are irrelevant

4

Challenges
• Large amounts of high dimensional sparse data:

• Computational time should scale with #“1” features

• Cannot process entire dataset “all at once”

• Many frequent features are irrelevant

• Some of the infrequent features are highly relevant

4

Challenges
• Large amounts of high dimensional sparse data:

• Computational time should scale with #“1” features

• Cannot process entire dataset “all at once”

• Many frequent features are irrelevant

• Some of the infrequent features are highly relevant

• Need to learn relatively compact models:

• Training can use lots of (distributed) memory & CPUs

• Serving (testing) is performed on many more
instances than training and often should be

4

Outline
• Brief reminder: 

 linear models, empirical loss, regularization

• Convexity, Smoothness, and L1 regularization

• Gradients & Subgradients for loss minimization

• Gradient Descent & Stochastic Gradient Methods

• Proximal view of GD & SG

• Fobos: dimension efficient proximal method

• AdaGrad: feature efficient adaptive proximal method

5

Elementary Start: Linear Models

x1 x2 x3 x4 x5 x6 x7 x8Instance X

w1Weights W w2 w3 w4 w5 w6 w7 w8

Prediction
ŷ = w · x =

nX

j=1

wjxj

True Target y) `(y, ŷ) (loss function)

6

Elementary Start: Linear Models

x1 x2 x3 x4 x5 x6 x7 x8Instance X

w1Weights W w2 w3 w4 w5 w6 w7 w8

Prediction
ŷ = w · x =

nX

j=1

wjxj

True Target y) `(y, ŷ) (loss function)

`(y, ŷ) = (y � ŷ)2 `(y, ŷ) = e�yŷ
Example of losses

squared error exponential loss
6

Empirical Loss (Linear Regression)

x

y

7

Empirical Loss (Linear Regression)

x

y

7

Empirical Loss (Linear Regression)

x

y

7

Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

x

y

7

Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

x

y

7

Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

1
10

()

x

y

7

Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

L(w) =
1
m

mX

i=1

`(yi,w · xi)

Empirical

Loss

x

y

7

Convex Losses

8

152 Convex Learning Problems

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u+ (1� ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u+ (1� ↵)v) ↵f(u) + (1� ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted below.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x,�) : f(x) �} . (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a non-convex function f : R ! R, along with its
epigraph, is given below.

Convex Losses

8

152 Convex Learning Problems

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u+ (1� ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u+ (1� ↵)v) ↵f(u) + (1� ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted below.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x,�) : f(x) �} . (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a non-convex function f : R ! R, along with its
epigraph, is given below.

152 Convex Learning Problems

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u+ (1� ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u+ (1� ↵)v) ↵f(u) + (1� ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted below.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x,�) : f(x) �} . (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a non-convex function f : R ! R, along with its
epigraph, is given below.

152 Convex Learning Problems

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u+ (1� ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u+ (1� ↵)v) ↵f(u) + (1� ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted below.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x,�) : f(x) �} . (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a non-convex function f : R ! R, along with its
epigraph, is given below.

Overfitting
y

x

9

Overfitting
Suppose we were able 
to fit a spline function 
to the data

y

x

9

Then the empirical
loss L(w) would be 0

Overfitting
y

x

9

Overfitting

However new data points
are unlikely to reside on
the piecewise linear curve 
 “overfitting”

y

x

9

Overfitting
y

x

But, is it possible to overfit
with a linear model?

9

Overfitting
y

x

Yes, when number of
features is very large &
many are irrelevant

9

• To prevent overfitting we need to constrain the
volume of the space of the possible linear predictors

• A common approach is to limit the p-norm of W

Preventing Overfitting

w1

w2

kw
k 1

�

w1

w2

kw
k 2

�

10

Unconstrained 
optimum of

Achieving Sparsity using 1-norm

w1

w2

L(w)

kw
k 1

=
�

11

Achieving Sparsity using 1-norm

w1

w2

kw
k 1

=
�

11

Achieving Sparsity using 1-norm

w1

w2

kw
k 1

=
�

11

Achieving Sparsity using 1-norm

w1

w2

kw
k 1

=
�

11

Achieving Sparsity using 1-norm

“CORNER” (W2 = 0)

w1

w2

kw
k 1

=
�

11

Achieving Sparsity using 1-norm

“CORNER” (W2 = 0)

w1

w2

kw
k 1

=
�

See e.g. Candes’06, Donoho’06
11

Penalized Form

min
w

L(w) + � �w�1

L(w)

kwk1

+

 SPARSITY PROPERTIES ARE ANALOGOUS TO CONSTRAINED FORM
12

Gradient Descent

L(w)

w

13

Gradient Descent

L(w)

w

w1

13

Gradient Descent

L(w)

w

rL(w1)

w1

13

Gradient Descent

L(w)

w

rL(w1)

w1

w2

13

Gradient Descent

L(w)

w

rL(w1)

rL(w2)

w1

w2

13

Gradient Descent

L(w)

w

rL(w1)

rL(w2)

w1

w2

w3

13

Gradient Descent

L(w)

w

rL(w1)

rL(w2)
rL(w3)

w1

w2

w3

13

Gradient Descent

• Gradient descent main loop:

• Compute gradient 

• Update

L(w)

w

rL(w1)

rL(w2)
rL(w3)

w1

w2

w3

wt+1 wt � ⌘trtL

rtL =
1

|S|
X

i2S

@

@w

`(wt; (xi, yi))

13

Gradient Descent

• Gradient descent main loop:

• Compute gradient 

• Update

L(w)

w

rL(w1)

rL(w2)
rL(w3)

w1

w2

w3

wt+1 wt � ⌘trtL
STEP SIZE

rtL =
1

|S|
X

i2S

@

@w

`(wt; (xi, yi))

13

Lipschitz & Smooth Convex Losses

14

F(W)

Lipschitz & Smooth Convex Losses

14

F(W)

Quadratic Lower Bound: Lipschitzness (*)

Lipschitz & Smooth Convex Losses

14

F(W)

Quadratic Lower Bound: Lipschitzness (*)

Quadratic Upper Bound: Smoothness

Lipschitz Losses
• Domain Loss function:

• Lipschitz losses change sufficiently “slow” 

• |x| is Lipschitz over the entire reals but x2 is not!

• Homework Q.1: what is the Lipschitz constant for 
log(1+exp(x)) and what is the domain

• Homework Q.2: if L and Q are Lipschitz functions
with constants β1 & β2, what is the Lipschitz constant
for L(Q(w)) [Note that L is a scalar function while Q is
a vector function]

15

Smooth Losses

• A loss is β-smooth if its gradient is β-Lipschitz 
[Note that we extended Lipschitz to vector functions] 
 
 

• Homework Q.3: show that if a loss is β-smooth then

16

• Assume that loss function is β-Lipschitz

• Perform the following updates:

!

• Let w* be the minimizer of the loss over 
the domain {w s.t. ||w|| < r}

• Let u be the average of wt from t=1 through T

• Then, the gap between u and w* w.r.t loss is

Gradient Descent for Lipschitz Losses

17

Proof Outline

• Use convexity to upper bound the difference between the
loss at u and the loss at w*

• Use the distance between wt and w* as potential

• Find a learning rate that minimizes at each iteration a
bound on the potential

• Important comments on smoothness and stochastic
optimization to follow the proof

• See also Section 14.1 in: 
Understanding Machine Learning: From Theory to Algorithms 
by Shai Shalev-Shwartz & Shai Ben-David

18

Stochastic Optimization

Training set is large and the source is i.i.d then we can
sub-sample S to obtain an estimate of the gradient

!

!

  

r̂tL =
1

|S0|
X

i2S0

@

@w

`(wt; (xi, yi))

19

Stochastic Optimization

Training set is large and the source is i.i.d then we can
sub-sample S to obtain an estimate of the gradient

!

!

  

S0 ⇢ Sr̂tL =
1

|S0|
X

i2S0

@

@w

`(wt; (xi, yi))

19

Stochastic Optimization

Training set is large and the source is i.i.d then we can
sub-sample S to obtain an estimate of the gradient

!

!

  

S0 ⇢ Sr̂tL =
1

|S0|
X

i2S0

@

@w

`(wt; (xi, yi))

19

Convergence Rate still holds in expectation {over S’} ! 

Subgradients
!

Subgradient set of a function f at x0

x0

f

�f(x0) =
�
g : f(x) ⇥ f(x0) + g�(x� x0)

⇥

20

Subgradients
!

Subgradient set of a function f at x0

x0

f

�f(x0) =
�
g : f(x) ⇥ f(x0) + g�(x� x0)

⇥

20

 Minimization using Subgradients

!

!

• Unconstrained stochastic subgradient descent
wt+1 = wt � �tgt

min
w

L(w) + � �w�1

gt 2 r̂t L + @kwtk1

Minimize

21

 Minimization using Subgradients

!

!

• Unconstrained stochastic subgradient descent
wt+1 = wt � �tgt

min
w

L(w) + � �w�1

gt 2 r̂t L + @kwtk1

@|wt,j | = sign(wt,j)

Minimize

21

Subgradients: Caveat

Subgradients are “non-informative” at singularities

22

Subgradients: Caveat

Subgradients are “non-informative” at singularities

22

Subgradients: Caveat

Subgradients are “non-informative” at singularities

��w�1

22

Subgradients: Caveat

Subgradients are “non-informative” at singularities

��w�1

22

Subgradients: Caveat

Subgradients are “non-informative” at singularities

��w�1

22

Subgradients: Caveat

Subgradients are “non-informative” at singularities

��w�1

• DENSE SOLUTION FOR W

22

Subgradients: Caveat

Subgradients are “non-informative” at singularities

• DENSE SOLUTION FOR W
• SLOW CONVERGENCE

22

Fobos

23

Two Step Approach
+

24

Two Step Approach
+

wt

24

Two Step Approach
+

rL̂t

wt

wt+ 1
2

GD on L only

24

Two Step Approach
+

rL̂t

wt

wt+ 1
2

+

wt+ 1
2

GD on L only

24

Two Step Approach
+

rL̂t

wt

wt+ 1
2

+

wt+ 1
2

GD on L only

Solve Analytically
24

Fobos: Two Step Approach

(1) Unconstrained stochastic gradient of loss

!

!

(2) Incorporate regularization and solve

wt+ 1
2

= wt � ⌘gt

wt+1 = argmin
w

⇢
1
2

���w �wt+ 1
2

���
2

+ ⌘ �R(w)
�

25

Fobos for L1 Regularization
wt+1,j

|{z}
�⌘

wt+ 1
2 ,j

26

Fobos for L1 Regularization

wt+1,j

wt+1,j

wt+ 1
2 ,j

wt+ 1
2 ,j

26

Fobos for L1 Regularization

wt+1,j

wt+1,j

wt+ 1
2 ,j

SHRINKAGE wt+ 1
2 ,j

26

Fobos for L1 Regularization
wt+1,j

wt+ 1
2 ,j

|wt+ 1
2 ,j | < �⌘) wt+1,j = 0

26

Fobos for L1 Regularization
wt+1,j

ZERO

wt+ 1
2 ,j

26

!

• The optimum () satisfies

Forward Looking Subgradient

wt+1

wt+1 = wt � ⌘ gL
t � ⌘ � gR

t+1

27

!

• The optimum () satisfies

Forward Looking Subgradient

wt+1

CURRENT GRADIENT
OF EMPIRICAL LOSS

wt+1 = wt � ⌘ gL
t � ⌘ � gR

t+1

27

!

• The optimum () satisfies

Forward Looking Subgradient

wt+1

CURRENT GRADIENT
OF EMPIRICAL LOSS

FORWARD SUBGRADIENT
OF REGULARIZATION

wt+1 = wt � ⌘ gL
t � ⌘ � gR

t+1

27

!

• The optimum () satisfies

Forward Looking Subgradient

wt+1

CURRENT GRADIENT
OF EMPIRICAL LOSS

FORWARD SUBGRADIENT
OF REGULARIZATION

Yields very simple alternative analysis, in particular
convergence to the optimum at a rate of

O

✓
1p
T

◆
or O

✓
log(T)

T

◆

wt+1 = wt � ⌘ gL
t � ⌘ � gR

t+1

27

Proximal Operators

28

Proximal Operators

28

Proximal Operators

28

Proximal Operators

28

Proximal Operators

Cast a tradeoff:

• Maintaining proximity to weight vector

• Following the steepest descent direction
28

Proximal Operators

Cast a tradeoff:

• Maintaining proximity to weight vector

• Following the steepest descent direction
28

Proximal Operators

Cast a tradeoff:

• Maintaining proximity to weight vector

• Following the steepest descent direction
28

Proximal Operators

28

proximity gradient

Proximal Operators

28

proximity gradient

MY BAD!

Fobos & Proximal Operators

• Uses decomposition of the objective into an empirical
risk minimization term and a regularization term

• Uses the squared Euclidian norm for proximity

29

• If we constrain w to the probability simplex, use 
relative entropy, we get Exponentiated Gradient (EG)

EG & Proximal Operators

30

High Dim Data ➪ Sparse Gradients
g g g g

t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

For an efficient implementation computation should:

• Scale with the number of non-zeros

• Not with the full dimension

31

The following lemma to the rescue:

P.1 : wt = arg min
w

1
2
⇤w �wt�1⇤2 + �t⇤w⇤q

T � P.1 ⇥ P.2 q 2 {1, 2,1}

wT (P.1) = w? (P.2)

P.2 : w? = arg min
w

1
2
kw �w0k2 +

TX

t=1

�t

!
kwkq

32

Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

33

Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

33

SKIP
UPDATE
PHASE
(LAZY
EVAL)

Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

33

FOBOS
UPDATE

WITH

� =
6�

t=2

�t

SKIP
UPDATE
PHASE
(LAZY
EVAL)

Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

33

FOBOS
UPDATE

WITH

� =
6�

t=2

�t

SKIP
UPDATE
PHASE
(LAZY
EVAL)

Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

33

FOBOS
UPDATE

WITH

� =
6�

t=2

�t

SKIP
UPDATE
PHASE
(LAZY
EVAL)

Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

33

Just-in-time update for each new sample:

• Accumulated proximal update

• Stochastic gradient step (w/o further ops)

