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• To predict the MID of an entity a large number of 
boolean predicates are built and combined


• Most predicates evaluate to be false for most examples


• Example: [ωt = President-Name] & [ωt+1=“White-House”]


High Dimensional Sparse Data
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How to use the predicates in order 
to make accurate predictions ?

?



• To predict the MID of an entity a large number of 
boolean predicates are built and combined


• Most predicates evaluate to be false for most examples


• Example: [ωt = President-Name] & [ωt+1=“White-House”]


High Dimensional Sparse Data

x � {0, 1}n (0, 0, 1, 0, 1, 0, . . . , 0, 0, 1, 0)
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Which predicates are “important” for 
performing accurate predictions?

?



Example 

Setting in a Picture

f1 f2 f3 f4 f5 f6 f7 f8
0 1 0 1 1 0 0 0
1 0 1 0 0 0 1 0
1 1 1 1 0 1 0 1
0 1 0 0 0 0 1 0

(e.g. MID=“Obama”) 

Target Y 

1

1

0
0

0
0
0

INSTANTIATED PREDICATES == FEATURES

1 0 0 0 0 0 1 1
1 0 0 1 0 0 1 0
0 1 1 0 0 1 0 1

             X1 

             X2 

             X7 
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Challenges
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Challenges
• Large amounts of high dimensional sparse data:


• Computational time should scale with #“1” features


• Cannot process entire dataset “all at once”
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Challenges
• Large amounts of high dimensional sparse data:


• Computational time should scale with #“1” features


• Cannot process entire dataset “all at once”

• Many frequent features are irrelevant

• Some of the infrequent features are highly relevant

• Need to learn relatively compact models:


• Training can use lots of (distributed) memory & CPUs


• Serving (testing) is performed on many more 
instances than training and often should be 
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Outline
• Brief reminder: 

   linear models, empirical loss, regularization


• Convexity, Smoothness, and L1 regularization


• Gradients & Subgradients for loss minimization


• Gradient Descent & Stochastic Gradient Methods


• Proximal view of GD & SG


• Fobos: dimension efficient proximal method


• AdaGrad: feature efficient adaptive proximal method
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Elementary Start: Linear Models

x1 x2 x3 x4 x5 x6 x7 x8Instance X

w1Weights W w2 w3 w4 w5 w6 w7 w8

Prediction 
ŷ = w · x =

nX

j=1

wjxj

True Target y ) `(y, ŷ) (loss function)
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Elementary Start: Linear Models

x1 x2 x3 x4 x5 x6 x7 x8Instance X

w1Weights W w2 w3 w4 w5 w6 w7 w8

Prediction 
ŷ = w · x =

nX

j=1

wjxj

True Target y ) `(y, ŷ) (loss function)

`(y, ŷ) = (y � ŷ)2 `(y, ŷ) = e�yŷ
Example of  losses

squared error exponential loss
6



Empirical Loss (Linear Regression)
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y
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Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

x

y
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Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

1
10

( )

x

y
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Empirical Loss (Linear Regression)

`(y2, ŷ2) = (y2 � ŷ2)2

L(w) =
1
m

mX

i=1

`(yi,w · xi)

Empirical

Loss 

x

y
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Convex Losses
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152 Convex Learning Problems

non-convex convex

Given ↵ 2 [0, 1], the combination, ↵u+ (1� ↵)v of the points u,v is called a
convex combination.

definition 12.2 (Convex function) Let C be a convex set. A function f :
C ! R is convex if for every u,v 2 C and ↵ 2 [0, 1],

f(↵u+ (1� ↵)v)  ↵f(u) + (1� ↵)f(v) .

In words, f is convex if for any u,v, the graph of f between u and v lies below
the line segment joining f(u) and f(v). An illustration of a convex function,
f : R ! R, is depicted below.

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

The epigraph of a function f is the set

epigraph(f) = {(x,�) : f(x)  �} . (12.1)

It is easy to verify that a function f is convex if and only if its epigraph is a
convex set. An illustration of a non-convex function f : R ! R, along with its
epigraph, is given below.
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Overfitting
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Overfitting
Suppose we were able 
to fit a spline function 
to the data

y

x
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Then the empirical 
loss L(w) would be 0

Overfitting
y

x
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Overfitting

However new data points 
are unlikely to reside on 
the piecewise linear curve 
           “overfitting” 

y

x
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Overfitting
y

x

But, is it possible to overfit 
with a linear model?            
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Overfitting
y

x

Yes, when number of 
features is very large & 
many are irrelevant
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• To prevent overfitting we need to constrain the 
volume of the space of the possible linear predictors


• A common approach is to limit the p-norm of W

Preventing Overfitting

w1

w2

kw
k 1


�

w1

w2

kw
k 2


�
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Unconstrained 
optimum of 

Achieving Sparsity using 1-norm

w1

w2

L(w)

kw
k 1

=
�
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Achieving Sparsity using 1-norm

“CORNER” (W2 = 0)

w1

w2

kw
k 1

=
�
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Achieving Sparsity using 1-norm

“CORNER” (W2 = 0)

w1

w2

kw
k 1

=
�

See e.g. Candes’06, Donoho’06
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Penalized Form

min
w

L(w) + � �w�1

L(w)

kwk1

+

 SPARSITY PROPERTIES ARE ANALOGOUS TO CONSTRAINED FORM
12



Gradient Descent

L(w)

w
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Gradient Descent

L(w)

w

w1
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Gradient Descent

L(w)

w

rL(w1)

w1
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Gradient Descent

L(w)

w

rL(w1)

rL(w2)
rL(w3)

w1

w2

w3
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Gradient Descent

• Gradient descent main loop:


• Compute gradient 

• Update 

L(w)

w

rL(w1)

rL(w2)
rL(w3)

w1

w2

w3

wt+1  wt � ⌘trtL

rtL =
1

|S|
X

i2S

@

@w

`(wt; (xi, yi))
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Gradient Descent

• Gradient descent main loop:


• Compute gradient 

• Update 

L(w)

w

rL(w1)

rL(w2)
rL(w3)

w1

w2

w3

wt+1  wt � ⌘trtL
STEP SIZE

rtL =
1

|S|
X

i2S

@

@w

`(wt; (xi, yi))
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Lipschitz & Smooth Convex Losses

14

F(W)
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F(W)

Quadratic Lower Bound: Lipschitzness (*)



Lipschitz & Smooth Convex Losses

14

F(W)

Quadratic Lower Bound: Lipschitzness (*)

Quadratic Upper Bound: Smoothness



Lipschitz Losses 
• Domain                  Loss function:


• Lipschitz losses change sufficiently “slow” 

• |x| is Lipschitz over the entire reals but x2 is not!


• Homework Q.1: what is the Lipschitz constant for 
log(1+exp(x)) and what is the domain


• Homework Q.2: if L and Q are Lipschitz functions 
with constants β1 & β2, what is the Lipschitz constant 
for L(Q(w))   [Note that L is a scalar function while Q is 
a vector function]

15



Smooth Losses

• A loss is β-smooth if its gradient is β-Lipschitz 
[Note that we extended Lipschitz to vector functions] 
 
 

• Homework Q.3: show that if a loss is β-smooth then 

16



• Assume that loss function is β-Lipschitz


• Perform the following updates:


!

• Let w* be the minimizer of the loss over 
the domain {w s.t. ||w|| < r}


• Let u be the average of wt from t=1 through T


• Then, the gap between u and w* w.r.t loss is

Gradient Descent for Lipschitz Losses

17



Proof Outline

• Use convexity to upper bound the difference between the 
loss at u and the loss at w*


• Use the distance between wt and w* as potential


• Find a learning rate that minimizes at each iteration a 
bound on the potential


• Important comments on smoothness and stochastic 
optimization to follow the proof


• See also Section 14.1 in: 
Understanding Machine Learning: From Theory to Algorithms 
by Shai Shalev-Shwartz  & Shai Ben-David
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Stochastic Optimization

Training set is large and the source is i.i.d then we can 
sub-sample S to obtain an estimate of the gradient


!

!

      

r̂tL =
1

|S0|
X

i2S0

@

@w

`(wt; (xi, yi))

19
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19

Convergence Rate still holds in expectation {over S’} ! 



Subgradients
!

Subgradient set of a function f at x0

x0

f

�f(x0) =
�
g : f(x) ⇥ f(x0) + g�(x� x0)

⇥
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 Minimization using Subgradients

!

!

• Unconstrained stochastic subgradient descent
wt+1 = wt � �tgt

min
w

L(w) + � �w�1

gt 2 r̂t L + @kwtk1

Minimize

21



 Minimization using Subgradients

!

!

• Unconstrained stochastic subgradient descent
wt+1 = wt � �tgt

min
w

L(w) + � �w�1

gt 2 r̂t L + @kwtk1

@|wt,j | = sign(wt,j)

Minimize

21



Subgradients: Caveat

Subgradients are “non-informative” at singularities
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22



Subgradients: Caveat

Subgradients are “non-informative” at singularities

• DENSE SOLUTION FOR W
• SLOW CONVERGENCE
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Fobos
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Two Step Approach
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Two Step Approach
+

rL̂t

wt

wt+ 1
2

GD on L only
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+
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Two Step Approach
+

rL̂t

wt

wt+ 1
2

+

wt+ 1
2

GD on L only

Solve Analytically
24



Fobos: Two Step Approach

(1) Unconstrained stochastic gradient of loss


!

!

(2) Incorporate regularization and solve 

wt+ 1
2

= wt � ⌘gt

wt+1 = argmin
w

⇢
1
2

���w �wt+ 1
2

���
2

+ ⌘ �R(w)
�

25



Fobos for L1 Regularization
wt+1,j

|{z}
�⌘

wt+ 1
2 ,j
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Fobos for L1 Regularization

wt+1,j

wt+1,j

wt+ 1
2 ,j

wt+ 1
2 ,j
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Fobos for L1 Regularization

wt+1,j

wt+1,j

wt+ 1
2 ,j

SHRINKAGE wt+ 1
2 ,j
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Fobos for L1 Regularization
wt+1,j

wt+ 1
2 ,j

|wt+ 1
2 ,j | < �⌘ ) wt+1,j = 0
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Fobos for L1 Regularization
wt+1,j

ZERO

wt+ 1
2 ,j
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!

• The optimum (         ) satisfies

Forward Looking Subgradient

wt+1

wt+1 = wt � ⌘ gL
t � ⌘ � gR

t+1
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!

• The optimum (         ) satisfies

Forward Looking Subgradient

wt+1

CURRENT GRADIENT 
OF EMPIRICAL LOSS

FORWARD SUBGRADIENT 
OF REGULARIZATION

Yields very simple alternative analysis, in particular 
convergence to the optimum at a rate of 

O

✓
1p
T

◆
or O

✓
log(T )

T

◆

wt+1 = wt � ⌘ gL
t � ⌘ � gR

t+1
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Proximal Operators
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Proximal Operators

Cast a tradeoff:


• Maintaining proximity to weight vector


• Following the steepest descent direction
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Proximal Operators

28

proximity gradient



Proximal Operators

28

proximity gradient

MY BAD!



Fobos & Proximal Operators

• Uses decomposition of the objective into an empirical 
risk minimization term and a regularization term


• Uses the squared Euclidian norm for proximity

29



• If we constrain w to the probability simplex, use 
relative entropy, we get Exponentiated Gradient (EG)

EG & Proximal Operators

30



High Dim Data ➪ Sparse Gradients
g g g g

t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...

For an efficient implementation computation should:

• Scale with the number of non-zeros

• Not with the full dimension

31



The following lemma to the rescue:

P.1 : wt = arg min
w

1
2
⇤w �wt�1⇤2 + �t⇤w⇤q

T � P.1 ⇥ P.2 q 2 {1, 2,1}

wT (P.1) = w? (P.2)

P.2 : w? = arg min
w

1
2
kw �w0k2 +

 
TX

t=1

�t

!
kwkq

32



Efficient High Dimensional Update

g g g g
t=1 0 1.2 0 5.4
t=2 2 0 1.8 0
t=3 0 0 1.5 0
t=4 0 0 0 2
t=5 4.1 0 0 2
t=6 0 2.4 3.5 4
...
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SKIP 
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PHASE 
(LAZY 
EVAL)
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FOBOS 
UPDATE 
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6�
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Just-in-time update for each new sample:

• Accumulated proximal update

• Stochastic gradient step (w/o further ops)


