Efficient Online Learning, Deterministic, and Stochastic Optimization

Yoram Singer
Machine Intelligence Center
Google Research

CS6780: Advanced Machine Learning, Cornell

High Dimensional Sparse Data

- To predict the MID of an entity a large number of boolean predicates are built and combined
- Most predicates evaluate to be false for most examples
- Example: $\left[\omega_{t}=\right.$ President-Name] \& [$\omega_{\mathrm{t}+1}=$ "White-House"]

High Dimensional Sparse Data

- To predict the MID of an entity a large number of boolean predicates are built and combined
- Most predicates evaluate to be false for most examples
- Example: $\left[\omega_{t}=\right.$ President-Name] \& [$\omega_{\mathrm{t}+1}=$ "White-House"]

$$
\pi_{5}(" \ldots ")=\text { true }
$$

High Dimensional Sparse Data

- To predict the MID of an entity a large number of boolean predicates are built and combined
- Most predicates evaluate to be false for most examples
- Example: $\left[\omega_{t}=\right.$ President-Name] \& [$\omega_{\mathrm{t}+1}=$ "White-House"]

```
How to use the predicates in order to make accurate predictions ?
```

$$
\mathbf{x} \in\{0,1\}^{n} \quad(0,0,1,0,1,0, \ldots, 0,0,1,0)
$$

High Dimensional Sparse Data

- To predict the MID of an entity a large number of boolean predicates are built and combined
- Most predicates evaluate to be false for most examples
- Example: $\left[\omega_{t}=\right.$ President-Name] \& [$\omega_{\mathrm{t}+1}=$ "White-House"]

$$
\mathbf{x} \in\{0,1\}^{n} \quad(0,0,1,0,1,0, \ldots, 0,0,1,0)
$$

Setting in a Picture

Example X_{1}	INSTAATIATED PREDICATES $=$ = FEATURES								$\stackrel{\text { (e.g. MDD"obama }}{\text { Target } \mathbf{Y}}$
	f_{1}		f_{3}	f_{4}	f5	f_{6}	f_{7}	f_{8}	
	0	1	0	1	1	0	0	0	0
X_{2}	1	0	1	0	0	0	1	0	0
	1	1	1	1	0	1	0	1	1
	0	1	0	0	0	0	1	0	0
	1	0	0	0	0	0	1	1	0
	1	0	0	1	0	0	1	0	0
x_{7}	0	1	1	0	0	1	0	1	1

Setting in a Picture

	INSTANTIATED PREDICATES $=$ = FEATURES								$\stackrel{\text { (e.g.MD-"oamama }}{\text { Target }} \mathbf{Y}$
	f_{1}		f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	
Example X_{1}	0	1	0	1	1	0	0	0	0
	1	0	1	0	0	0	1	0	0
	1	1	1	1	0	1	0	1	1
	0	1	0	0	0	0	1	0	0
	1	0	0	0	0	0	1	1	0
	1	0	0	1	0	0	1	0	0
x_{7}	0	1	1	0	0	1	0	1	1

Setting in a Picture

Example \mathbf{X}_{1}	URES								(e.g. MID="Obama" Target
	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	
	0	1	0	1	1	0	0	0	0
X_{2}	1	0	1	0	0	0	1	0	0
	1	1	1	1	0	(1)	0	1	(1)
	0	1	0	0	0	0	1	0	0
	1	0	0	0	0	0	1	1	0
	1	0	0	1	0	0	1	0	0
X_{7}	0	1	1	0	0	(1)	0	1	(1)
$\begin{aligned} & \text { FREQUEN } \\ & \text { NON-INFO } \end{aligned}$	T BU					NFRE	QUE	IT YET	

Setting in a Picture

Example \mathbf{X}	InStantiated predicates $=$ = features								(e.g. MID="Obama") Target \mathbf{Y}
	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}	f_{8}	
	0	1	0	1	1	0	0	0	0
X_{2}	1	0	1	0	0	0	1	0	0
	1	1	1	1	0	(1)	0	1	(1)
	0	1	0	0	0	0	1	0	0
	1	0	0	0	0	0	1	1	0
	1	0	0	1	0	0	1	0	0
X_{7}	0	1	1	0	0	(1)	0	1	(1)
$\begin{aligned} & \text { FREQUEN } \\ & \text { NON-INFOR } \end{aligned}$	RMAT					NFRE INFO	QUEN	lt Yet	TRUE ALSO FOR REAL VALUED FEATURES

Challenges

Challenges

- Large amounts of high dimensional sparse data:
- Computational time should scale with \#"1" features
- Cannot process entire dataset "all at once"

Challenges

- Large amounts of high dimensional sparse data:
- Computational time should scale with \#"1" features
- Cannot process entire dataset "all at once"
- Many frequent features are irrelevant

Challenges

- Large amounts of high dimensional sparse data:
- Computational time should scale with \#"1" features
- Cannot process entire dataset "all at once"
- Many frequent features are irrelevant
- Some of the infrequent features are highly relevant

Challenges

- Large amounts of high dimensional sparse data:
- Computational time should scale with \#"1" features
- Cannot process entire dataset "all at once"
- Many frequent features are irrelevant
- Some of the infrequent features are highly relevant
- Need to learn relatively compact models:
- Training can use lots of (distributed) memory \& CPUs
- Serving (testing) is performed on many more instances than training and often should be

Outline

- Brief reminder:
linear models, empirical loss, regularization
- Convexity, Smoothness, and L_{1} regularization
- Gradients \& Subgradients for loss minimization
- Gradient Descent \& Stochastic Gradient Methods
- Proximal view of GD \& SG
- Fobos: dimension efficient proximal method
- AdaGrad: feature efficient adaptive proximal method

Elementary Start: Linear Models

Instance \mathbf{X}| X_{1} | X_{2} | X_{3} | X_{4} | X_{5} | X_{6} | X_{7} | X_{8} |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Weights \mathbf{W}| W_{1} | $\mathrm{~W}_{2}$ | $\mathrm{~W}_{3}$ | $\mathrm{~W}_{4}$ | $\mathrm{~W}_{5}$ | $\mathrm{~W}_{6}$ | $\mathrm{~W}_{7}$ | $\mathrm{~W}_{8}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Prediction $\hat{y}=\mathbf{w} \cdot \mathbf{x}=\sum_{j=1}^{n} w_{j} x_{j}$
True Target $y \Rightarrow \quad \ell(y, \hat{y})$ (loss function)

Elementary Start: Linear Models

Instance \mathbf{X}
 $$
\begin{array}{|l|l|l|l|l|l|l|l|} \hline \mathrm{X}_{1} & \mathrm{X}_{2} & \mathrm{x}_{3} & \mathrm{X}_{4} & \mathrm{x}_{5} & \mathrm{X}_{6} & \mathrm{x}_{7} & \mathrm{x}_{8} \\ \hline \end{array}
$$

Prediction $\quad \hat{y}=\mathbf{w} \cdot \mathbf{x}=\sum_{j=1}^{n} w_{j} x_{j}$
True Target $y \Rightarrow \ell(y, \hat{y}) \quad$ (loss function)
Example of losses

$$
\ell(y, \hat{y})=(y-\hat{y})^{2} \quad \ell(y, \hat{y})=e^{-y \hat{y}}
$$

Empirical Loss (Linear Regression)

Empirical Loss (Linear Regression)

$\frac{1}{10}(-\square+\square+\square+\square+\square+\square+\square+\square+\square)$

Empirical Loss (Linear Regression)

Convex Losses

Convex Losses

$f(\alpha \mathbf{u}+(1-\alpha) \mathbf{v}) \leq \alpha f(\mathbf{u})+(1-\alpha) f(\mathbf{v})$

Overfitting

Overfitting

Suppose we were able to fit a spline function to the data

Overfitting

Then the empirical loss $L(w)$ would be 0

Overfitting

However new data points are unlikely to reside on the piecewise linear curve "overfitting"

Overfitting

But, is it possible to overfit with a linear model?

Overfitting

Yes, when number of features is very large \& many are irrelevant

Preventing Overfitting

- To prevent overfitting we need to constrain the volume of the space of the possible linear predictors
- A common approach is to limit the p-norm of \mathbf{W}

Achieving Sparsity using 1-norm

See e.g. Candes'06, Donoho'06

Penalized Form

Sparsity Properties Are Analogous to Constrained Form

Gradient Descent

- Gradient descent main loop:
- Compute gradient $\nabla_{t} L=\frac{1}{|S|} \sum_{i \in S} \frac{\partial}{\partial \mathbf{w}} \ell\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{i}, y_{i}\right)\right)$
- Update

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \nabla_{t} L
$$

Gradient Descent

- Gradient descent main loop:
- Compute gradient $\nabla_{t} L=\frac{1}{|S|} \sum_{i \in S} \frac{\partial}{\partial \mathbf{w}} \ell\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{i}, y_{i}\right)\right)$
- Update

$$
\mathbf{w}_{t+1} \leftarrow \mathbf{w}_{t}-\eta_{t} \nabla_{t} L
$$

Lipschitz \& Smooth Convex Losses

F(W)

Lipschitz \& Smooth Convex Losses

Lipschitz \& Smooth Convex Losses

Quadratic Upper Bound: Smoothness

Quadratic Lower Bound: Lipschitzness (*)

Lipschitz Losses

- Domain $\Omega \subset \mathbb{R}^{d}$ Loss function: $\mathcal{L}: \mathbb{R}^{d} \rightarrow \mathbb{R}_{+}$
- Lipschitz losses change sufficiently "slow"

$$
\beta-\text { Lipschitz } \Leftrightarrow|\mathcal{L}(\mathbf{w})-\mathcal{L}(\mathbf{v})| \leq \beta\|\mathbf{w}-\mathbf{v}\|
$$

- $|\mathrm{x}|$ is Lipschitz over the entire reals but x^{2} is not!
- Homework Q.1: what is the Lipschitz constant for $\log (1+\exp (x))$ and what is the domain
- Homework Q.2: if L and Q are Lipschitz functions with constants $\beta_{1} \& \beta_{2}$, what is the Lipschitz constant for $L(Q(w)) \quad$ [Note that L is a scalar function while Q is a vector function]

Smooth Losses

- A loss is β-smooth if its gradient is β-Lipschitz [Note that we extended Lipschitz to vector functions]

$$
\|\nabla \mathcal{L}(\mathbf{w})-\nabla \mathcal{L}(\mathbf{v})\| \leq \beta\|\mathbf{w}-\mathbf{v}\|
$$

- Homework Q.3: show that if a loss is β-smooth then

$$
\mathcal{L}(\mathbf{w}) \leq \mathcal{L}(\mathbf{v})+\nabla \mathcal{L}(\mathbf{v}) \cdot(\mathbf{w}-\mathbf{v})+\frac{\beta}{2}\|\mathbf{w}-\mathbf{v}\|^{2}
$$

Gradient Descent for Lipschitz Losses

- Assume that loss function is β-Lipschitz
- Perform the following updates:

$$
\mathbf{w}^{t+1}=\mathbf{w}^{t}-\eta_{t} \nabla \mathcal{L}\left(\mathbf{w}^{t}\right) \text { where } \eta_{t}=\tilde{O}(1 / \sqrt{t})
$$

- Let w^{*} be the minimizer of the loss over the domain $\{w$ s.t. $\|w\|<r\}$
- Let u be the average of w^{t} from $t=1$ through T
- Then, the gap between u and w^{*} w.r.t loss is

$$
\mathcal{L}(\mathbf{u})-\mathcal{L}\left(\mathbf{w}^{\star}\right)=\mathcal{L}\left(\frac{1}{T} \sum_{t=1}^{T} \mathbf{w}^{t}\right)-\mathcal{L}\left(\mathbf{w}^{\star}\right) \leq \frac{r \beta}{\sqrt{T}}
$$

Proof Outline

- Use convexity to upper bound the difference between the loss at u and the loss at w^{*}
- Use the distance between w^{t} and w^{*} as potential
- Find a learning rate that minimizes at each iteration a bound on the potential
- Important comments on smoothness and stochastic optimization to follow the proof
- See also Section 14.1 in: Understanding Machine Learning: From Theory to Algorithms by Shai Shalev-Shwartz \& Shai Ben-David

Stochastic Optimization

Training set is large and the source is i.i.d then we can sub-sample S to obtain an estimate of the gradient

$$
\hat{\nabla}_{t} L=\frac{1}{\left|S^{\prime}\right|} \sum_{i \in S^{\prime}} \frac{\partial}{\partial \mathbf{w}} \ell\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{i}, y_{i}\right)\right)
$$

Stochastic Optimization

Training set is large and the source is i.i.d then we can sub-sample S to obtain an estimate of the gradient

$$
\hat{\nabla}_{t} L=\frac{1}{\left|S^{\prime}\right|} \sum_{i \in S^{\prime}} \frac{\partial}{\partial \mathbf{w}} \ell\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{i}, y_{i}\right)\right) S^{\prime} \subset S
$$

Stochastic Optimization

Training set is large and the source is i.i.d then we can sub-sample S to obtain an estimate of the gradient

$$
\hat{\nabla}_{t} L=\frac{1}{\left|S^{\prime}\right|} \sum_{i \in S^{\prime}} \frac{\partial}{\partial \mathbf{w}} \ell\left(\mathbf{w}_{t} ;\left(\mathbf{x}_{i}, y_{i}\right)\right) S^{\prime} \subset S
$$

Convergence Rate still holds in expectation \{over S'\} !

Subgradients

Subgradient set of a function f at x_{0}

$$
\partial f\left(\boldsymbol{x}_{0}\right)=\left\{\boldsymbol{g}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{0}\right)+\boldsymbol{g}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right\}
$$

Subgradients

Subgradient set of a function f at x_{0}

$$
\partial f\left(\boldsymbol{x}_{0}\right)=\left\{\boldsymbol{g}: f(\boldsymbol{x}) \geq f\left(\boldsymbol{x}_{0}\right)+\boldsymbol{g}^{\top}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right)\right\}
$$

Minimization using Subgradients

Minimize

$$
\min _{\boldsymbol{w}} L(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{1}
$$

- Unconstrained stochastic subgradient descent

$$
\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta_{t} \boldsymbol{g}_{t} \quad \boldsymbol{g}_{t} \in \hat{\nabla}_{t} L+\partial\left\|\boldsymbol{w}_{t}\right\|_{1}
$$

Minimization using Subgradients

Minimize

$$
\min _{\boldsymbol{w}} L(\boldsymbol{w})+\lambda\|\boldsymbol{w}\|_{1}
$$

- Unconstrained stochastic subgradient descent

$$
\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta_{t} \boldsymbol{g}_{t} \quad \boldsymbol{g}_{t} \in \hat{\nabla}_{t} L+\partial\left\|\boldsymbol{w}_{t}\right\|_{1}
$$

$$
\partial\left|w_{t, j}\right|=\operatorname{sign}\left(w_{t, j}\right)
$$

Subgradients: Caveat

Subgradients are "non-informative" at singularities

Subgradients: Caveat

Subgradients are "non-informative" at singularities

Subgradients: Caveat

Subgradients are "non-informative" at singularities

Subgradients: Caveat

Subgradients are "non-informative" at singularities

Subgradients: Caveat

Subgradients are "non-informative" at singularities

Subgradients: Caveat

Subgradients are "non-informative" at singularities

- Dense solution for W

Subgradients: Caveat

Subgradients are "non-informative" at singularities

- Dense solution for W
- Slow convergence

Fobos

Two Step Approach

Two Step Approach

Two Step Approach

GD on L only

$$
\mathbf{W}_{t+\frac{1}{2}}
$$

Two Step Approach

GD on L only
$\mathbf{W}_{t+\frac{1}{2}}$

Two Step Approach

GD on L only

$$
\mathbf{W}_{t+\frac{1}{2}}
$$

Fobos: Two Step Approach

(1) Unconstrained stochastic gradient of loss

$$
\boldsymbol{w}_{t+\frac{1}{2}}=\boldsymbol{w}_{t}-\eta \boldsymbol{g}_{t}
$$

(2) Incorporate regularization and solve

$$
\boldsymbol{w}_{t+1}=\underset{\boldsymbol{w}}{\operatorname{argmin}}\left\{\frac{1}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t+\frac{1}{2}}\right\|^{2}+\eta \lambda R(\boldsymbol{w})\right\}
$$

Fobos for L_{1} Regularization

Fobos for L_{1} Regularization

$$
w_{t+1, j}
$$

Forward Looking Subgradient

- The optimum $\left(\mathbf{w}_{t+1}\right)$ satisfies

$$
\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta \boldsymbol{g}_{t}^{L}-\eta \lambda \boldsymbol{g}_{t+1}^{R}
$$

Forward Looking Subgradient

- The optimum $\left(\mathbf{w}_{t+1}\right)$ satisfies

$$
\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta \boldsymbol{g}_{t}^{L}-\eta \lambda \boldsymbol{g}_{t+1}^{R}
$$

CURRENT GRADIENT OF EMPIRICAL LOSS

Forward Looking Subgradient

- The optimum $\left(\mathbf{w}_{t+1}\right)$ satisfies

$$
\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta \boldsymbol{g}_{t}^{L}-\eta \lambda \boldsymbol{g}_{t+1}^{R}
$$

CURRENT GRADIENT OF EMPIRICAL LOSS

FORWARD SUBGRADIENT
OF REGULARIZATION

Forward Looking Subgradient

- The optimum $\left(\mathbf{w}_{t+1}\right)$ satisfies

$$
\boldsymbol{w}_{t+1}=\boldsymbol{w}_{t}-\eta \boldsymbol{g}_{t}^{L}-\eta \lambda \boldsymbol{g}_{t+1}^{R}
$$

CURRENT GRADIENT OF EMPIRICAL LOSS

FORWARD SUBGRADIENT
 OF REGULARIZATION

Yields very simple alternative analysis, in particular convergence to the optimum at a rate of

$$
O\left(\frac{1}{\sqrt{T}}\right) \text { or } O\left(\frac{\log (T)}{T}\right)
$$

Proximal Operators

Cast a tradeoff:

- Maintaining proximity to weight vector
- Following the steepest descent direction

Proximal Operators

Cast a tradeoff:

- Maintaining proximity to weight vector
- Following the steepest descent direction

Proximal Operators

Cast a tradeoff:

- Maintaining proximity to weight vector
- Following the steepest descent direction

Proximal Operators

Proximal Operators

Fobos \& Proximal Operators

- Uses decomposition of the objective into an empirical risk minimization term and a regularization term
- Uses the squared Euclidian norm for proximity

$$
\mathbf{w}_{t+1}=\arg \min _{\mathbf{w} \in \Omega} \frac{1}{2 \eta}\left\|\mathbf{w}-\mathbf{w}_{t}\right\|^{2}+\left\langle\mathbf{w}, \mathbf{g}_{t}\right\rangle+\lambda\|\mathbf{w}\|_{1}
$$

EG \& Proximal Operators

- If we constrain \mathbf{w} to the probability simplex, use relative entropy, we get Exponentiated Gradient (EG)

$$
\begin{aligned}
\mathbf{w}^{t+1} & =\arg \min _{\mathbf{w} \in \Delta} \frac{1}{\eta} D_{\mathrm{KL}}\left(\mathbf{w} \| \mathbf{w}^{t}\right)+\left\langle\mathbf{w}, \mathbf{g}^{t}\right\rangle \\
\mathbf{w}^{t+1} & =\arg \min _{\mathbf{w} \in \Delta} \sum_{j=1}^{d} w_{j}\left(\log \left(\frac{w_{j}}{w_{j}^{t}}\right)+\eta g_{j}^{t}\right) \\
w_{j}^{t+1} & =\frac{1}{Z} w_{j}^{t} \exp \left(-\eta g_{j}^{t}\right) \\
& \text { where } Z=\sum_{l=1}^{d} w_{l}^{t} \exp \left(-\eta g_{l}^{t}\right)
\end{aligned}
$$

High Dim Data $\boldsymbol{>} \boldsymbol{>}$ Sparse Gradients

	g	g	g	g
$t=1$	0	1.2	0	5.4
$t=2$	2	0	1.8	0
$t=3$	0	0	1.5	0
$t=4$	0	0	0	2
$t=5$	4.1	0	0	2
$t=6$	0	2.4	3.5	4
\ldots				

For an efficient implementation computation should:

- Scale with the number of non-zeros
- Not with the full dimension

The following lemma to the rescue:

$$
\begin{aligned}
& \mathcal{P} .1: \quad \boldsymbol{w}_{t}=\arg \min _{\boldsymbol{w}} \frac{1}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{t-1}\right\|^{2}+\lambda_{t}\|\boldsymbol{w}\|_{q} \\
& \mathcal{P} .2: \quad \boldsymbol{w}^{\star}=\arg \min _{\boldsymbol{w}} \frac{1}{2}\left\|\boldsymbol{w}-\boldsymbol{w}_{0}\right\|^{2}+\left(\sum_{t=1}^{T} \lambda_{t}\right)\|\boldsymbol{w}\|_{q} \\
& T \times \mathcal{P} .1 \equiv \mathcal{P} .2 \quad q \in\{1,2, \infty\} \\
& \mathbf{w}_{T}(\mathcal{P} .1)=\mathbf{w}^{\star}(\mathcal{P} .2)
\end{aligned}
$$

Efficient High Dimensional Update

	g	g	g	g
$t=1$	0	1.2	0	5.4
$\mathbf{t}=2$	2	0	1.8	0
$t=3$	0	0	1.5	0
$\mathbf{t}=4$	0	0	0	2
$\mathbf{t}=5$	4.1	0	0	2
$\mathbf{t}=6$	0	2.4	3.5	4
\ldots				

Efficient High Dimensional Update

	g	g	g	g
$t=1$	0	1.2	0	5.4
$\mathrm{t}=2$	2	0	1.8	0
$\mathrm{t}=3$	0	0	1.5	0
$\mathrm{t}=4$	0	0	0	2
$\mathrm{t}=5$	4.1	0	0	2
$\mathrm{t}=6$	0	2.4	3.5	4
\ldots				

Efficient High Dimensional Update

- Stochastic gradient step (w/o further ops)

