Online Learning: Partial Information and Bandits

CS6780 – Advanced Machine Learning Spring 2015

Thorsten Joachims Cornell University

Reading:

http://jeremykun.com/2013/10/28/optimism-in-the-face-of-uncertainty-the-ucb1-algorithm/

http://jeremykun.com/2013/11/08/adversarial-bandits-and-the-exp3-algorithm/

Bandit Learning Model

Setting

- -N arms named $H = \{h_1, ..., h_N\}$
- In each round t, each arm \mathbf{h}_i performs an action and incurs loss $\Delta_{t,i}$
- Algorithm can select which arm to pull in each round

Interaction Model

- FOR t from 1 to T
 - Algorithm selects arm $h_{i\,t}$ according to strategy A_{w_t} and follows its action y
 - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$ (all but Δ_{t,i_t} unobserved)
 - Algorithm observes and incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on Δ_{t,i_t}

Exponentiated Gradient Algorithm for Bandit Setting (EXP3)

• Initialize
$$w_1 = \left(\frac{1}{N}, \dots, \frac{1}{N}\right), \gamma = \min\left\{1, \sqrt{\frac{N \log N}{(e-1)\Delta T}}\right\}$$

- FOR t from 1 to T
 - Algorithm randomly picks i_t with probability $P_t(i_t) = (1 \gamma)w_{t,i} + \gamma/N$
 - Arms incur losses $\Delta_{t,1} \dots \Delta_{t,N}$
 - Algorithm observes and incurs loss Δ_{t,i_t}
 - Algorithm updates w for bandit i_t as $w_{t+1,i_t} = w_{t,i_t} \exp\left(-\eta \Delta_{t,i_t}/P(i_t)\right)$ Then normalize w_{t+1} so that $\sum_i w_{t+1,i} = 1$.

Adversarial Bandit Regret

- Idea
 - Compare performance to best arm in hindsight
- Regret
 - Overall loss of best arm i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

- Expected loss of algorithm A over sequence of arm selections i_t is

$$E_A\left[\sum_{t=1}^T \Delta_{t,i_t}\right]$$

Regret is difference between expected loss of algorithm and best fixed arm in hindsight

$$ExpectedRegret(T) = E_A \left[\sum_{t=1}^{T} \Delta_{t,i_t} \right] - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

EXP3 Regret Bound

Theorem: For γ ∈]0,1] and stopping time T
EXP3 has expected regret of at most

$$ERegret(T) \le (e-1)\gamma \left(\min_{i} \sum_{t=1}^{T} \Delta_{t,i}\right) + \frac{N \log N}{\gamma}$$

• Corollary: For $\Delta_{t,i} \leq \Delta$, EXP2 with γ as on previous slide has expected regret of at most $ERegret(T) \leq 2.63 \sqrt{\Delta N log N}$.

Stochastic Bandit Learning Model

Setting

- -N arms named $H = \{h_1, \dots, h_N\}$
- In each round t, each z_{t+1} n_i performs an action and incurs loss $\Delta_{t,i}$ drawn from fixed distribution $P(\Delta|i)$ with mean μ_i .

Algorithm can select which are

- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects arm h_{it} accordance action y
 - Arms incur losses $\Delta_{t,1} ... \Delta_{t,N}$ (al
 - Algorithm observes and incurs le
 - Algorithm updates w_t to w_{t+1} b

| Sex | Bit | Bit | Bit | Sex | Bit | Bit | Sex | Bit

Key difference compared to

Adversarial Bandit Model

Stochastic Bandit Regret

- Idea
 - Compare performance to arm with best expected performance
- Regret
 - Overall loss of best arm i^* is

$$\Delta_T^* = T \min_{i \in [1..N]} \mu_i = T \mu_{i^*}$$

Expected loss of algorithm A over sequence of arm selections i_t

$$E_A\left[\sum_{t=1}^T \Delta_{t,i_t}\right]$$

 Regret is difference between expected loss of algorithm and best fixed arm in hindsight

$$ExpectedRegret(T) = E_A \left[\sum_{t=1}^{T} \Delta_{t,i_t} \right] - T\mu_{i^*}$$

UCB1 Algorithm

Init:

- Play each arm i once to get initial values for $w_1...w_N$.
- -n = (1, ..., 1)
- For t from (N + 1) to T
 - Play arm $i_t = argmax_i \left\{ \frac{w_i}{n_i} + \sqrt{2 \log \frac{T}{n_i}} \right\}$
 - Algorithm observes and incurs loss Δ_{t,i_t}
 - $-w_i = w_i + \Delta_{t,i_t}$
 - $-n_i=n_i+1$

UCB1 Regret Bound

Theorem: The expected regret of UCB1 is at most

$$O\left(\sum_{i\neq i^*}\frac{\log T}{\epsilon_i}\right)$$

where i^* is the best arm and $\epsilon_i = \mu_{i^*} - \mu_i$.

Other Online Learning Problems

- Contextual Bandits
- Dueling Bandits
- Coactive Learning
- Online Convex Optimization
- Partial Monitoring