Online Learning: Expert Setting

CS6780 – Advanced Machine Learning Spring 2015

> Thorsten Joachims Cornell University

Reading: See notes on CMS.

Online Classification Model

- Setting
 - Classification
 - Hypothesis space H with h: X→Y
 - Measure misclassifications (i.e. zero/one loss)
- Interaction Model
 - Initialize hypothesis $h \in H$
 - FOR t from 1 to T
 - Receive $x_{\rm t}$
 - Make prediction $\hat{y_t} = h(x_t)$
 - Receive true label $y_{\rm t}$
 - Record if prediction was correct (e.g., $\hat{y_t} = y_t$)
 - Update h

(Online) Perceptron Algorithm

- Input: $S = ((\vec{x}_1, y_1), ..., (\vec{x}_n, y_n)), \ \vec{x}_i \in \Re^N, \ y_i \in \{-1, 1\}$ • Algorithm:
- _ atta _ (i _ h _ (
 - α₀ 0, κ 0
 - FOR i=1 TO i
 - * IF $y_i(\vec{w}_k \cdot \vec{x}_i) \leq 0$ ### makes mistake
 - $\cdot \vec{w}_{k+1} = \vec{w}_k + y_i \vec{x}_i$
 - k = k + 1
 - * ENDIF
 - ENDFOR
 - Output:

Perceptron Mistake Bound

Theorem: For any sequence of training examples $S = ((\vec{x}_1, y_1), \dots, (\vec{x}_n, y_n))$ with

$$R = \max ||\vec{x}_i||,$$

if there exists a weight vector \overrightarrow{w}_{opt} with $\left\|\overrightarrow{w}_{opt}\right\|=1$ and

$$y_i\left(\overrightarrow{w}_{opt}\cdot\overrightarrow{x}_i\right) \geq \delta$$

for all $1 \le i \le n$, then the Perceptron makes at most

$$\frac{R^2}{\delta^2}$$

errors.

Expert Learning Model

- Setting
 - -N experts named $H = \{h_1, ..., h_N\}$
 - Each expert \mathbf{h}_i takes an action $y=h_i(x_t)$ in each round t and incurs loss $\Delta_{t,i}$
 - Algorithm can select which expert's action to follow in each round
- Interaction Model
 - FOR t from 1 to T
 - Algorithm selects expert $h_{i_{\,t}}$ according to strategy A_{w_t} and follows its action y
 - Experts incur losses $\Delta_{t,1}$... $\Delta_{t,N}$
 - Algorithm incurs loss Δ_{t,i_t}
 - Algorithm updates w_t to w_{t+1} based on $\Delta_{t,1}$... $\Delta_{t,N}$

Halving Algorithm

- Setting
 - -N experts named $H = \{h_1, \dots, h_N\}$
 - Binary actions $y = \{+1, -1\}$ given input x, zero/one loss
 - Perfect expert exists in H
- Algorithm
 - $-VS_1 = H$
 - FOR t = 1 TO T
 - Predict the same y as majority of $h_i \in VS_t$ • $VS_{t+1} = VS_t$ minus those $h_i \in VS_t$ that were wrong
- · Mistake Bound
 - How many mistakes can the Halving algorithm make before predicting perfectly?

Regret

Idea

- N experts named $\mathbf{H} = \{h_1, \dots, h_N\}$

Compare performance of A to best expert i* in hindsight.

Regret

- Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

- Loss of algorithm \boldsymbol{A} at time \boldsymbol{t} is

 $\Delta_{t,i}$

for algorithm that picks recommendation of expert $i = A(w_t)$ at time t.

 Regret is difference between loss of algorithm and best fixed expert in hindsight

$$Regret(T) = \sum_{t=1}^{T} \Delta_{t,A(w_t)} - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Weighted Majority Algorithm

Setting

- N experts named $\mathbf{H} = \{h_1, \dots, h_N\}$

- Binary actions $y = \{+1, -1\}$ given input x, zero/one loss

- There may be no expert in H that acts perfectly

Algorithm

– Initialize $\mathbf{w}_1 = (1,1,\ldots,1)$

- FOR t = 1 TO T

• Predict the same y as majority of $h_i \in \mathcal{H}$, each weighted by $w_{t,i}$

• FOREACH $h_i \in H$

 $- \text{ IF h_i incorrect THEN } w_{t+1,i} = w_{t,i} * \beta \\ \text{ELSE } w_{t+1,i} = w_{t,i}$

Regret Bound

— How close is the number of mistakes the Weighted Majority Algorithm makes to the number of mistakes of the best expert in hindsight?

Exponentiated Gradient Algorithm for Expert Setting (EG)

Setting

- N experts named $H = \{h_1, ..., h_N\}$

- Any actions, any positive and bounded loss

There may be no expert in H that acts perfectly

Algorithm

- Initialize $w_1 = \left(\frac{1}{N}, \dots, \frac{1}{N}\right)$

- FOR t from 1 to T

• Algorithm randomly picks i_t from $P(I_t = i_t) = w_{t,i}$

• Experts incur losses $\Delta_{t,1} \dots \Delta_{t,N}$

• Algorithm incurs loss Δ_{t,i_t}

• Algorithm updates w for all experts i as $\forall i, w_{t+1,i} = w_{t,i} \exp(-\eta \Delta_{t,i})$ Then normalize w_{t+1} so that $\sum_j w_{t+1,j} = 1$.

Expected Regret

Idea

Compare performance to best expert in hindsight

Regret

- Overall loss of best expert i^* in hindsight is

$$\Delta_T^* = \min_{i^* \in [1..N]} \sum_{t=1}^T \Delta_{t,i^*}$$

– Expected loss of algorithm $A(w_t)$ at time t is

$$E_{A(w_t)}[\Delta_{t,i}] = w_t \Delta_t$$

for randomized algorithm that picks recommendation of expert i at time t with probability $w_{t,i}\,.$

 Regret is difference between expected loss of algorithm and best fixed expert in hindsight

ExpectedRegret(T) =
$$\sum_{t=1}^{T} w_t \Delta_t - \min_{i^* \in [1..N]} \sum_{t=1}^{T} \Delta_{t,i^*}$$

Regret Bound for Exponentiated Gradient Algorithm

Theorem

The expected regret of the exponentiated gradient algorithm in the expert setting is bounded by

 $\text{Expected} Regret(T) \leq \Delta^{\max} \sqrt{2 T \log(|H|)}$

where $\Delta^{\max} = \max\{\Delta_{t,i}\}$ and $\eta = \frac{\sqrt{\log(N)}}{\Delta\sqrt{2T}}$.