Structured Output Prediction: Generative Models

CS6780 - Advanced Machine Learning
Spring 2015
Thorsten Joachims Cornell University

Reading:
Murphy 17.3, 17.4, 17.5.1

Structured Output Prediction

- Supervised Learning from Examples
- Find function from input space X to output space Y

$$
h: X \rightarrow Y
$$

such that the prediction error is low.

- Typical
- Output space is just a single number
- Classification: -1,+1
- Regression: some real number
- General
- Predict outputs that are complex objects

Examples of Complex Output Spaces

- Natural Language Parsing
- Given a sequence of words x, predict the parse tree y.
- Dependencies from structural constraints, since y has to be a tree.

Examples of Complex Output Spaces

- Multi-Label Classification
- Given a (bag-of-words) document x, predict a set of labels y.
- Dependencies between labels from correlations between labels ("iraq" and "oil" in newswire corpus)

Examples of Complex Output Spaces

- Scene Recognition
- Given a 3D point cloud with RGB from Kinect camera
- Segment into volumes
- Geometric dependencies between segments (e.g. monitor usually close to keyboard)

Part-of-Speech Tagging Task

- Assign the correct part of speech (word class) to each word in a document
"The/DT planet/NN Jupiter/NNP and/CC its/PRP moons/NNS are/VBP
in/IN effect/NN a/DT mini-solar/JJ system/NN ,/, and/CC Jupiter/NNP
itself/PRP is/VBZ often/RB called/VBN a/DT star/NN that/IN never/RB caught/VBN fire/NN ./."
- Needed as an initial processing step for a number of language technology applications
- Information extraction
- Answer extraction in QA
- Base step in identifying syntactic phrases for IR systems
- Critical for word-sense disambiguation (WordNet apps)
- ...

Why is POS Tagging Hard?

- Ambiguity
- He will race/VB the car.
- When will the race/NN end?
- I bank/VB at CFCU.
- Go to the bank/NN!
- Average of ~ 2 parts of speech for each word
- The number of tags used by different systems varies a lot. Some systems use < 20 tags, while others use >400.

The POS Learning Problem

- Example

Hidden Markov Model for POS Tagging

- States
- Think about as nodes of a graph
- One for each POS tag
- special start state (and maybe end state)
- Transitions
- Think about as directed edges in a graph
- Edges have transition probabilities
- Output
- Each state also produces a word of the sequence
- Sentence is generated by a walk through the graph

Hidden Markov Model

- States: $y \in\left\{s_{1}, \ldots, s_{k}\right\}$
- Outputs symbols: $x \in\left\{o_{1}, \ldots, o_{m}\right\}$
- Starting probability $P\left(Y_{1}=y_{1}\right)$ - Specifies where the sequence starts
- Transition probability $P\left(Y_{i}=y_{i} \mid Y_{i-1}=y_{i-1}\right)$
- Probability that one states succeeds another
- Output/Emission probability $P\left(X_{i}=x_{i} \mid Y_{i}=y_{i}\right)$ - Probability that word is generated in this state
=> Every output+state sequence has a probability

$$
\begin{aligned}
P(x, y) & =P\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) \\
& =P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \prod_{i=2}^{l} P\left(x_{i} \mid y_{i}\right) P\left(y_{i} \mid y_{i-1}\right)
\end{aligned}
$$

Estimating the Probabilities

- Fully observed data:
- input/output sequence pairs
$P\left(Y_{i}=a \mid Y_{i-1}=b\right)=\frac{\# \text { of times state } a \text { follows state } b}{\# \text { of timec tote } b \text { ocenver }}$
$P\left(X_{i}=a \mid Y_{i}=b\right)=\#$ of times output a is observed in state
- Smoothing the estimates:
- See Naïve Bayes for text classification
- Partially observed data (Y_{i} unknown):
- Expectation-Maximization (EM)

HMM Prediction (Decoding)

Question: What is the most likely state sequence given an output sequence?

$$
\begin{aligned}
y^{*} & =\underset{y \in\left\{y_{1}, \ldots, y_{l}\right\}}{\operatorname{argmax}} P\left(x_{1}, \ldots, x_{l}, y_{1}, \ldots, y_{l}\right) \\
& =\underset{y \in\left\{y_{1}, \ldots, y_{l}\right\}}{\operatorname{argmax}}\left\{P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \prod_{i=2}^{l} P\left(x_{i} \mid y_{i}\right) P\left(y_{i} \mid y_{i-1}\right)\right\}
\end{aligned}
$$

Going on a trip

- Deal: trip to any 3 cities in

Germany -> Italy -> Spain for one low low price

- Deal:
- Each city i has an attractiveness score $c_{i} \in[0,10]$
- Each flight has an comfort score $f_{i, j} \in[0,10]$
- Find the best trip!

Going on a trip

- Deal: trip to any 3 cities in

Germany -> Italy -> Spain for one low low price

Country	City options
Germany	Berlin/Munich/Witten
Italy	Rome/Venice/Milan
Spain	Madrid/Barcelona/Malaga

Viterbi Algorithm for Decoding

- Efficiently compute most likely sequence

$$
\hat{y}=\underset{y \in\left\{y_{1} \ldots, y_{l}\right\}}{\operatorname{argmax}}\left\{P\left(y_{1}\right) P\left(x_{1} \mid y_{1}\right) \prod_{i=2}^{l} P\left(x_{i} \mid y_{i}\right) P\left(y_{i} \mid y_{i-1}\right)\right\}
$$

- Viterbi Algorithm:
$\delta_{y}(1)=P\left(Y_{1}=y\right) P\left(X_{1}=x_{1} \mid Y_{1}=y\right)$
$\delta_{y}(i+1)=\max _{v \in\left\{s_{1}, \ldots, s_{k}\right\}} \delta_{v}(i) P\left(Y_{i+1}=y \mid Y_{i}=v\right) P\left(X_{i+1}=x_{i+1} \mid Y_{i+1}=y\right)$

Viterbi Example

$\mathrm{P}\left(\mathrm{X}_{\mathrm{i}} \mid \mathrm{Y}_{\mathrm{i}}\right)$		1	bank	at	CFCU	go	to	the
DET		0.01	0.01	0.01	0.01	0.01	0.01	0.94
PRP		0.94	0.01	0.01	0.01	0.01	0.01	0.01
N		0.01	0.4	0.01	0.4	0.16	0.01	0.01
PREP		0.01	0.01	0.48	0.01	0.01	0.47	0.01
V		0.01	0.4	0.01	0.01	0.55	0.01	0.01
$\mathrm{P}\left(\mathrm{Y}_{1}\right)$			$\mathrm{P}\left(\mathrm{Y}_{\mathrm{i}} \mid Y_{i-1}\right)$	DET	PRP	N	PREP	V
DET	0.3		DET	0.01	0.01	0.96	0.01	0.01
PRP	0.3		PRP	0.01	0.01	0.01	0.2	0.77
N	0.1		N	0.01	0.2	0.3	0.3	0.19
PREP	0.1		PREP	0.3	0.2	0.3	0.19	0.01
V	0.2		V	0.2	0.19	0.3	0.3	0.01

