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Generative vs. Conditional vs. ERM  

• Empirical Risk Minimization 
– Find ℎ = argmin

ℎ∈𝐻
𝐸𝑟𝑟𝑆(ℎ) s.t. overfitting control 

– Pro: directly estimate decision rule 
– Con: committed to loss, X, Y 

• Discriminative Conditional Model 
– Find P(Y|X), then derive h(x) via Bayes rule 
– Pro: not committed to loss 
– Con: committed to X, Y; conditional distributions more complex than 

decision rule 

• Generative Model 
– Find P(X,Y), then derive h(x) via Bayes rule 
– Pro: not committed to loss function, X, and Y; often computationally 

easy 
– Con: Model dependencies in X 

 

Bayes Decision Rule 

• Assumption:  

– learning task P(X,Y)=P(Y|X) P(X) is known 

• Question: 

– Given instance x, how should it be classified to 
minimize prediction error? 

• Bayes Decision Rule:  

ℎ𝑏𝑎𝑦𝑒𝑠 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌[𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ] 

= 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌 𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃 𝑌 = 𝑦  

Bayes Theorem 

• It is possible to “switch” conditioning 
according to the following rule  

• Given any two random variables X and Y, it 
holds that 

 

 

• Note that 

 

𝑃 𝑌 = 𝑦 𝑋 = 𝑥 =
𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

𝑃(𝑋 = 𝑥)
 

𝑃 𝑋 = 𝑥 =  𝑃 𝑋 = 𝑥 𝑌 = 𝑦 𝑃(𝑌 = 𝑦)

𝑦∈Y

 

Naïve Bayes’ Classifier 
(Multivariate) 

• Model for each class 

 

 

 

• Prior probabilities 

 

• Classification rule:  

 

fever 
(h,l,n) 

cough 
(y,n) 

pukes 
(y,n) 

flu? 

high yes no 1 

high no yes 1 

low yes no -1 

low yes yes 1 

high no yes ??? 

𝑃 𝑋 = 𝑥 𝑌 = +1 =  𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = +1)

𝑁

𝑖=1

 

𝑃 𝑋 = 𝑥 𝑌 = −1 =  𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = −1)

𝑁

𝑖=1

 

𝑃 𝑌 = +1 , 𝑃(𝑌 = −1) 

ℎ𝑛𝑎𝑖𝑣𝑒 𝑥 = argmax
𝑦∈{+1,−1}

𝑃(𝑌 = 𝑦) 𝑃 𝑋𝑖 = 𝑥𝑖 𝑌 = 𝑦)

𝑁

𝑖=1

  

Estimating the Parameters of NB 
• Count frequencies in training data 

– n: number of training examples 
– n+ / n- : number of pos/neg examples 
– #(Xi=xi, y): number of times feature  

Xi takes value xi for examples in class y 
– |Xi|: number of values attribute Xi  

can take 

• Estimating P(Y) 
– Fraction of positive / negative examples in training data 

 
 

• Estimating P(X|Y) 
– Maximum Likelihood Estimate 

 
 

– Smoothing with Laplace estimate 

 
 

fever 
(h,l,n) 

cough 
(y,n) 

pukes 
(y,n) 

flu? 

high yes no 1 

high no yes 1 

low yes no -1 

low yes yes 1 

high no yes ??? 

𝑃 Y = +1 =
𝑛+

𝑛
 𝑃 Y = −1 =

𝑛−

𝑛
 

𝑃 (𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) =
#(𝑋𝑖 = 𝑥𝑖, 𝑦)

𝑛𝑦
 

𝑃 (𝑋𝑖 = 𝑥𝑖|𝑌 = 𝑦) =
#(𝑋𝑖 = 𝑥𝑖, 𝑦) + 1

𝑛𝑦 + |𝑋𝑖|
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Linear Discriminant Analysis 

• Spherical Gaussian model with unit variance for each class 
 
 
 

• Prior probabilities 
 
 

• Classification rule 
 
 
 
 
 

• Often called “Rocchio Algorithm” in Information Retrieval 
 
 

𝑃 𝑋 = 𝑥 𝑌 = +1)~exp −
1

2
𝑥 − 𝜇 +

2  

𝑃 𝑋 = 𝑥 𝑌 = −1)~exp −
1

2
𝑥 − 𝜇 −

2  

𝑃 𝑌 = +1 , 𝑃(𝑌 = −1) 

ℎ𝐿𝐷𝐴 𝑥 = argmax
𝑦∈{+1,−1}

𝑃 𝑌 = 𝑦 𝑒𝑥𝑝 −
1

2
𝑥 − 𝜇 𝑦

2

 argmax
𝑦∈{+1,−1}

log (𝑃 𝑌 = 𝑦 ) −
1

2
𝑥 − 𝜇 𝑦
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Estimating the Parameters of LDA 

• Count frequencies in training data 
– 𝑥 1, 𝑦 1 , … , 𝑥 𝑛 , 𝑦 𝑛 ~𝑃 𝑋, 𝑌 : training data 
– n: number of training examples 
– n+ / n-: number of positive/negative training examples 

• Estimating P(Y) 
– Fraction of pos / neg examples in training data 

 
 
 

• Estimating class means 
 

 
 

𝑃 Y = +1 =
𝑛+

𝑛
 𝑃 Y = −1 =

𝑛−

𝑛
 

𝜇 + =
1

𝑛+
 𝑥 𝑖

𝑖:𝑦𝑖=1

 𝜇 − =
1

𝑛−
 𝑥 𝑖

𝑖:𝑦𝑖=−1

 

Naïve Bayes Classifier 
(Multinomial) 

• Application: Text classification (𝑥 = (𝑤1, … , 𝑤𝑙) sequence) 
 
 
 
 

• Assumption 

 

 
 

 
 

• Classification Rule 

𝑃 𝑋 = 𝑥 𝑌 = +1 =  𝑃 𝑊 = 𝑤𝑖 𝑌 = +1

𝑙

𝑖=1

 

𝑃 𝑋 = 𝑥 𝑌 = −1 =  𝑃 𝑊 = 𝑤𝑖 𝑌 = −1

𝑙

𝑖=1

 

ℎ𝑛𝑎𝑖𝑣𝑒 𝑥 = argmax
𝑦∈{+1,−1}

𝑃(𝑌 = 𝑦) 𝑃 𝑊 = 𝑤𝑖 𝑌 = 𝑦)

𝑙

𝑖=1

  

Estimating the Parameters of 
Multinomial Naïve Bayes 

• Count frequencies in training data 

– n: number of training  
examples 

– n+ / n- : number of  
pos/neg examples 

– #(W=w, y): number of  
times word w occurs in examples of class y 

– l+ / l- : total number of words in pos/neg examples 

– | V |: size of vocabulary 

• Estimating P(Y) 
 

 

 

• Estimating P(X|Y) (smoothing with Laplace estimate): 

 

 

𝑃 Y = +1 =
𝑛+

𝑛
 𝑃 Y = −1 =

𝑛−

𝑛
 

𝑃 (𝑊 = 𝑤|𝑌 = 𝑦) =
#(𝑊 = 𝑤, 𝑦) + 1

𝑙𝑦 + |𝑉|
 


