Generative Models for Classification

CS6780 - Advanced Machine Learning
Spring 2015
Thorsten Joachims
Cornell University

Reading:
Murphy 3.5, 4.1, 4.2, 8.6.1

Generative vs. Conditional vs. ERM

- Empirical Risk Minimization
- Find $h=\operatorname{argmin} E r r_{S}(h)$ s.t. overfitting control $h \in H$
- Pro: directly estimate decision rule
- Con: committed to loss, X, Y
- Discriminative Conditional Model
- Find $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})$, then derive $\mathrm{h}(\mathrm{x})$ via Bayes rule
- Pro: not committed to loss
- Con: committed to X, Y; conditional distributions more complex than decision rule
- Generative Model
- Find $P(X, Y)$, then derive $h(x)$ via Bayes rule
- Pro: not committed to loss function, X , and Y ; often computationally easy
- Con: Model dependencies in X

Bayes Decision Rule

- Assumption:
- learning task $P(X, Y)=P(Y \mid X) P(X)$ is known
- Question:
- Given instance x, how should it be classified to minimize prediction error?
- Bayes Decision Rule:

$$
\begin{aligned}
h_{\text {bayes }(\vec{x})} & =\operatorname{argmax}_{y \in Y}[P(Y=y \mid X=\vec{x})] \\
& =\operatorname{argmax}_{y \in Y}[P(X=\vec{x} \mid Y=y) P(Y=y)]
\end{aligned}
$$

Bayes Theorem

- It is possible to "switch" conditioning according to the following rule
- Given any two random variables X and Y, it holds that

$$
P(Y=y \mid X=x)=\frac{P(X=x \mid Y=y) P(Y=y)}{P(X=x)}
$$

- Note that

$$
P(X=x)=\sum_{y \in \mathrm{Y}} P(X=x \mid Y=y) P(Y=y)
$$

Naïve Bayes' Classifier (Multivariate)

- Model for each class

$$
\begin{aligned}
& P(X=\vec{x} \mid Y=+1)=\prod_{i=1}^{N} P\left(X_{i}=x_{i} \mid Y=+1\right) \\
& P(X=\vec{x} \mid Y=-1)=\prod_{i=1}^{N} P\left(X_{i}=x_{i} \mid Y=-1\right)
\end{aligned}
$$

- Prior probabilities

fever (h, l, n)	cough (y, n)	pukes (y, n)	flu?
high	yes	no	1
high	no	yes	1
low	yes	no	-1
low	yes	yes	1
high	no	yes	???

$$
P(Y=+1), P(Y=-1)
$$

- Classification rule:

$$
h_{\text {naive }}(\vec{x})=\underset{y \in\{+1,-1\}}{\operatorname{argmax}}\left\{P(Y=y) \prod_{i=1}^{N} P\left(X_{i}=x_{i} \mid Y=y\right)\right\}
$$

Estimating the Parameters of NB

- Count frequencies in training data
- n : number of training examples
- $n_{+} / n_{\text {: }}$: number of pos/neg examples
- \#($\left.X_{i}=x_{i}, y\right)$: number of times feature X_{i} takes value x_{i} for examples in class y
- $\left|X_{i}\right|$: number of values attribute X_{i} can take
- Estimating P(Y)

fever (h, l, n)	cough (y, n)	pukes (y, n)	flu?
high	yes	no	1
high	no	yes	1
low	yes	no	-1
low	yes	yes	1
high	no	yes	???

- Fraction of positive / negative examples in training data

$$
\hat{P}(\mathrm{Y}=+1)=\frac{n_{+}}{n} \quad \hat{P}(\mathrm{Y}=-1)=\frac{n_{-}}{n}
$$

- Estimating P(X|Y)
- Maximum Likelihood Estimate

$$
\hat{P}\left(X_{i}=x_{i} \mid Y=y\right)=\frac{\#\left(X_{i}=x_{i}, y\right)}{n_{y}}
$$

- Smoothing with Laplace estimate

$$
\hat{P}\left(X_{i}=x_{i} \mid Y=y\right)=\frac{\#\left(X_{i}=x_{i}, y\right)+1}{n_{y}+\left|X_{i}\right|}
$$

Linear Discriminant Analysis

- Spherical Gaussian model with unit variance for each class

$$
\begin{aligned}
& P(X=\vec{x} \mid Y=+1) \sim \exp \left(-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{+}\right)^{2}\right) \\
& P(X=\vec{x} \mid Y=-1) \sim \exp \left(-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{-}\right)^{2}\right)
\end{aligned}
$$

- Prior probabilities

$$
P(Y=+1), P(Y=-1)
$$

- Classification rule

$$
\begin{aligned}
h_{L D A}(\vec{x})= & \underset{y \in\{+1,-1\}}{\operatorname{argmax}}\left\{P(Y=y) \exp \left(-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{y}\right)^{2}\right)\right\} \\
& \underset{y \in\{+1,-1\}}{\operatorname{argmax}}\left\{\log (P(Y=y))-\frac{1}{2}\left(\vec{x}-\vec{\mu}_{y}\right)^{2}\right\}
\end{aligned}
$$

- Often called "Rocchio Algorithm" in Information Retrieval

Estimating the Parameters of LDA

- Count frequencies in training data
$-\left(\vec{x}_{1}, \vec{y}_{1}\right), \ldots,\left(\vec{x}_{n}, \vec{y}_{n}\right) \sim P(X, Y)$: training data
- n : number of training examples
$-n_{+} / n_{-}$: number of positive/negative training examples
- Estimating $P(Y)$
- Fraction of pos / neg examples in training data

$$
\hat{P}(\mathrm{Y}=+1)=\frac{n_{+}}{n} \quad \hat{P}(\mathrm{Y}=-1)=\frac{n_{-}}{n}
$$

- Estimating class means

$$
\vec{\mu}_{+}=\frac{1}{n_{+}} \sum_{\left\{i: y_{i}=1\right\}} \vec{x}_{i} \quad \vec{\mu}_{-}=\frac{1}{n_{-}} \sum_{\left\{i: y_{i}=-1\right\}} \vec{x}_{i}
$$

Naïve Bayes Classifier (Multinomial)

- Application: Text classification $\left(x=\left(w_{1}, \ldots, w_{l}\right)\right.$ sequence $)$

text	CS?
$x_{1}=($ The.art. of, Programming $)$	+1
$x_{2}=$ (Introduction, lo, Calculus)	-1
$x_{3}=$ (Introduction, to, Complexity, Theory)	+1
$x_{4}=$ (Introduction, lo, Programming)	$? ?$

- Assumption

$$
\begin{aligned}
& \text { ption } \\
& P(X=x \mid Y=+1)=\prod_{i=1}^{l} P\left(W=w_{i} \mid Y=+1\right) \\
& P(X=x \mid Y=-1)=\prod_{i=1}^{l} P\left(W=w_{i} \mid Y=-1\right)
\end{aligned}
$$

- Classification Rule

$$
h_{\text {naive }}(x)=\underset{y \in\{+1,-1\}}{\operatorname{argmax}}\left\{P(Y=y) \prod_{i=1}^{l} P\left(W=w_{i} \mid Y=y\right)\right\}
$$

Estimating the Parameters of Multinomial Naïve Bayes

- Count frequencies in training data
- n : number of training examples
- n_{+} / n_{-}: number of pos/neg examples
- \#(W=w, y): number of

```
text
\mp@subsup{x}{1}{\prime}=(\mathrm{ The.art.of. Programuming)}
CS?
+1
\mp@subsup{x}{2}{}=(\mathrm{ Inlroduclion,lo.Calculus)}
r3}=(\mathrm{ Introduction.to, Complerity.Theory) +1
\mp@subsup{r}{4}{}=(\mathrm{ Introduction.to, Programming) ??}
```

times word w occurs in examples of class y

- $I_{+} / I_{\text {. }}$: total number of words in pos/neg examples
- | V |: size of vocabulary
- Estimating $\mathrm{P}(\mathrm{Y})$

$$
\hat{P}(\mathrm{Y}=+1)=\frac{n_{+}}{n} \quad \hat{P}(\mathrm{Y}=-1)=\frac{n_{-}}{n}
$$

- Estimating $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})$ (smoothing with Laplace estimate):

$$
\hat{P}(W=w \mid Y=y)=\frac{\#(W=w, y)+1}{l_{y}+|V|}
$$

