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Discriminative ERM Learning 

• Modeling Step: 
• Select classification rules H to consider (hypothesis 

space) 

• Training Principle: 
• Given training sample 𝒙𝟏, 𝒚𝟏 , … , 𝒙𝒏, 𝒚𝒏  

• Find h from H with lowest training error 
 Empirical Risk Minimization 

• Argument: generalization error bounds  low 
training error leads to low prediction error, if 
overfitting is controlled. 

• Examples: SVM, decision trees, Perceptron 

 

Bayes Decision Rule 

• Assumption:  

– learning task P(X,Y)=P(Y|X) P(X) is known 

• Question: 

– Given instance x, how should it be classified to 
minimize prediction error? 

• Bayes Decision Rule (for zero/one loss):  

ℎ𝑏𝑎𝑦𝑒𝑠 𝑥 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑦∈𝑌[𝑃 𝑌 = 𝑦 𝑋 = 𝑥 ] 

Generative vs. Conditional vs. ERM  

• Empirical Risk Minimization 
– Find ℎ = argmin

ℎ∈𝐻
𝐸𝑟𝑟𝑆(ℎ) s.t. overfitting control 

– Pro: directly estimate decision rule 
– Con: committed to loss, X, Y 

• Discriminative Conditional Model 
– Find P(Y|X), then derive h(x) via Bayes rule 
– Pro: not committed to loss 
– Con: committed to X, Y; conditional distributions more complex than 

decision rule 

• Generative Model 
– Find P(X,Y), then derive h(x) via Bayes rule 
– Pro: not committed to loss function, X, and Y; often computationally 

easy 
– Con: Model dependencies in X 

 

Logistic Regression 

• Data:  
– S = 𝑥1, 𝑦1 … 𝑥𝑛 , 𝑦𝑛 , 𝑥 ∈ ℜ𝑁 and 𝑦 ∈ −1,+1  

• Model:  
– 𝑃 𝑦 𝑥,𝑤 = 𝐵𝑒𝑟 𝑦 𝑠𝑖𝑔𝑚 𝑤 ⋅ 𝑥  

• Training objective: 
 
 
 

• Algorithm:  
– Stochastic gradient descent, Newton, etc. 

𝑤 = argmin
𝑤

 log 1 + exp −𝑦𝑖𝑤 ⋅ 𝑥𝑖

𝑛

𝑖=1

 

Regularized Logistic Regression 

• Data:  
– S = 𝑥1, 𝑦1 … 𝑥𝑛 , 𝑦𝑛 , 𝑥 ∈ ℜ𝑁 and 𝑦 ∈ −1,+1  

• Model:  
– 𝑃 𝑦 𝑥,𝑤 = 𝐵𝑒𝑟 𝑦 𝑠𝑖𝑔𝑚 𝑤 ⋅ 𝑥 , 𝑃(𝑤) = 𝑁 𝑤 0, Σ  

• Training objective: 
 
 
 

• Algorithm:  
– Stochastic gradient descent, Newton, etc. 

𝑤 = argmin
𝑤

1

2
𝑤 ⋅ 𝑤 + 𝐶 log 1 + exp −𝑦𝑖𝑤 ⋅ 𝑥𝑖

𝑛

𝑖=1
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Ridge Regression 

• Data:  
– S = 𝑥1, 𝑦1 … 𝑥𝑛 , 𝑦𝑛 , 𝑥 ∈ ℜ𝑁 and 𝑦 ∈ ℜ 

• Model:  
– 𝑃 𝑦 𝑥,𝑤 = 𝑁 𝑦 𝑤 ⋅ 𝑥, Ε , 𝑃(𝑤) = 𝑁 𝑤 0, Σ  

• Training objective: 
 
 
 

• Algorithm:  

– 𝑤 = 𝑑𝑖𝑎𝑔 𝐶 + 𝑋𝑇𝑋 −1𝑋𝑇𝑦 

𝑤 = argmin
𝑤

1

2
𝑤 ⋅ 𝑤 + 𝐶 𝑤 ⋅ 𝑥𝑖 − 𝑦𝑖

2

𝑛

𝑖=1

 

Discriminative Training of Linear Rules 

• Soft-Margin SVM  

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤  

– Δ 𝑦 , 𝑦𝑖 = max 0,1 − 𝑦𝑖𝑦  

• Perceptron 
– 𝑅 𝑤 = 0   

– Δ 𝑦 , 𝑦𝑖 = max 0,−𝑦𝑖𝑦  

• Linear Regression 
– 𝑅 𝑤 = 0  

– Δ 𝑦 , 𝑦𝑖 = 𝑦𝑖 − 𝑦 2 

 
 

• Ridge Regression 

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤  

– Δ 𝑦 , 𝑦𝑖 = 𝑦𝑖 − 𝑦 2 

• Lasso 

– 𝑅 𝑤 =
1

2
∑ 𝑤𝑖   

– Δ 𝑦 , 𝑦𝑖 = 𝑦𝑖 − 𝑦 2 

• Regularized Logistic Regression / 
Conditional Random Field 

– 𝑅 𝑤 =
1

2
𝑤 ∗ 𝑤  

– Δ 𝑦 , 𝑦𝑖 = log 1 + 𝑒−𝑦𝑖𝑦  
 

 

min
𝑤,𝑏

𝑅 𝑤 + 𝐶 Δ 𝑤 ∗ 𝑥𝑖 + 𝑏, 𝑦𝑖

𝑛

𝑖=1

 

Regularizer 
Training Loss / 
Empirical Risk / 
Training error 

Regularization 
Parameter 


