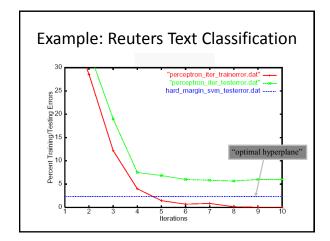
Support Vector Machines: Optimal Hyperplanes

CS6780 – Advanced Machine Learning Spring 2015

> Thorsten Joachims Cornell University

Reading: Murphy 14.5 Schoelkopf/Smola Chapter 7.1-7.3, 7.5



VC Dimension of Margin Hyperplanes

Theorem: Unbiased linear classifiers H_X with $\|w\| = 1/\delta$ and $\max \|x_i\| \le R$ and margin

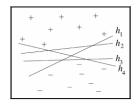
$$\min_i |w \cdot x_i| = 1$$

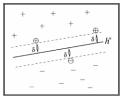
for a given set of instances $X = \{x_1, \dots, x_k\}$, have VC Dimension

$$VCDim(H_X) \le \frac{R^2}{\delta^2}$$

Optimal Hyperplanes

- · Assumption:
 - Training examples are linearly separable.





Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \Re^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. For general \vec{w} , the term functional margin is used to indicate that the norm of \vec{w} is not necessarily 1.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is

 $\delta = \inf_{S \sim P(X|Y)} \min_{(\vec{x}|x) \in S} y(\vec{w} \cdot \vec{x})$

Hard-Margin Separation

- · Goal:
 - Find hyperplane with the largest distance to the closest training examples.

 $\begin{array}{ll} \text{Optimization Problem (Primal):} \\ \min_{\vec{w},b} & \frac{1}{2}\vec{w}\cdot\vec{w} \\ s.t. & y_1(\vec{w}\cdot\vec{x}_1+b)\geq 1 \\ & \cdots \\ & y_n(\vec{w}\cdot\vec{x}_n+b)\geq 1 \end{array}$

- Support Vectors:
 - Examples with minimal distance (i.e. margin).

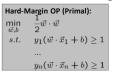
1

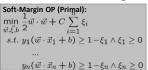
Non-Separable Training Data

- · Limitations of hard-margin formulation
 - For some training data, there is no separating hyperplane.
 - Complete separation (i.e. zero training error) can lead to suboptimal prediction error.

Soft-Margin Separation

Idea: Maximize margin and minimize training



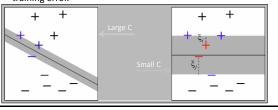


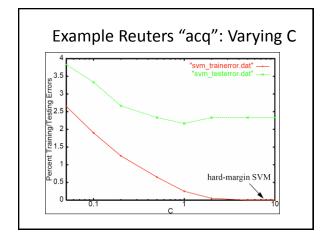
- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- ${\it C}$ is a parameter that controls tradeoff between margin and training error.

Controlling Soft-Margin Separation

- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

$$\begin{split} & \text{Soft-Margin OP (Primal):} \\ & \min_{\vec{w}, \vec{\xi}, b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i \\ & s.t. \ y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 - \xi_1 \wedge \xi_1 \geq 0 \\ & \cdots \\ & y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 - \xi_n \wedge \xi_n \geq 0 \end{split}$$





Example: Margin in High-Dimension Training Sample S_t 1 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 -1 1 0 0 0 1 0 0 -1 1 0 0 0 0 0 2 Hyperplane 1 1 Hyperplane 2 0 0 0 1 1 -1 -1 0 Hyperplane 3 0 0 0 1 -1 0 0 1 Hyperplane 4 -0.5 0 0 0 0 0 0 Hyperplane 5 1 -1 0 0 0 0 0 0 0 Hyperplane 6 -0.95 0 0.05 0.05 -0.05 -0.05 0.95 0 0.33 0.33 Hyperplane 7 -0.67 -0.33