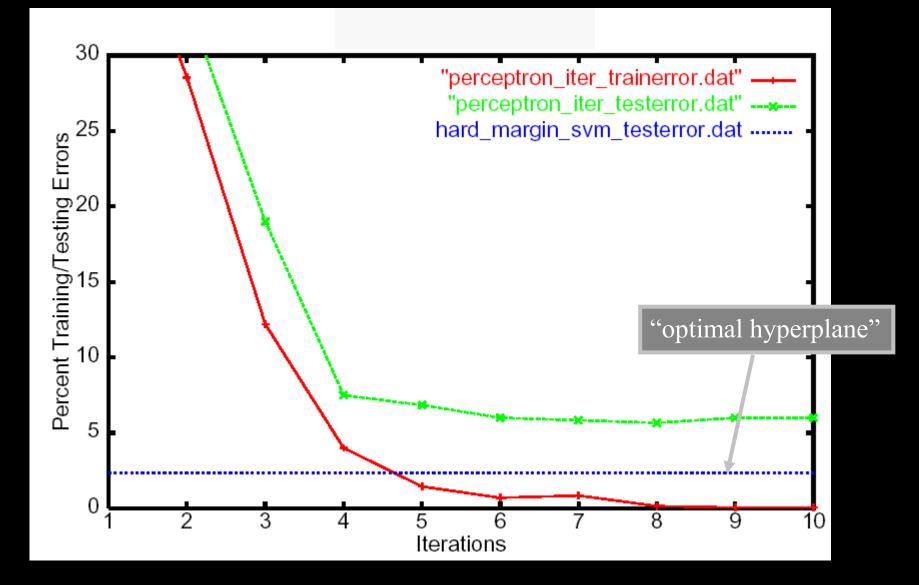
Support Vector Machines: Optimal Hyperplanes

CS6780 – Advanced Machine Learning Spring 2015

> Thorsten Joachims Cornell University

Reading: Murphy 14.5 Schoelkopf/Smola Chapter 7.1-7.3, 7.5

Example: Reuters Text Classification



VC Dimension of Margin Hyperplanes

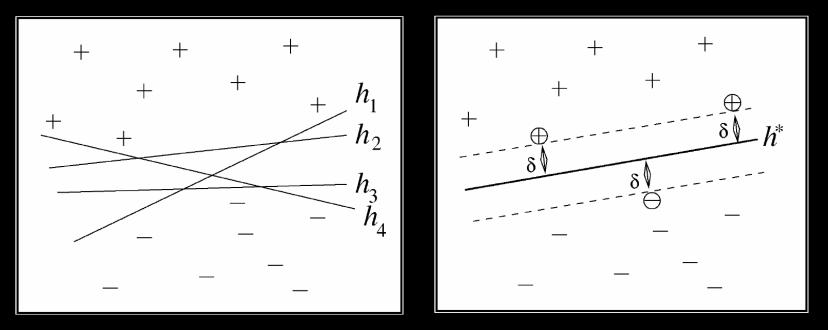
Theorem: Unbiased linear classifiers H_X with $||w|| = 1/\delta$ and $\max_i ||x_i|| \le R$ and margin $\min_i |w \cdot x_i| = 1$

for a given set of instances $X = \{x_1, ..., x_k\}$, have VC Dimension

$$VCDim(H_X) \le \frac{R^2}{\delta^2}$$

Optimal Hyperplanes

- Assumption:
 - Training examples are linearly separable.



Margin of a Linear Classifier

Definition: For a linear classifier h_w , the margin δ of an example (\vec{x}, y) with $\vec{x} \in \Re^N$ and $y \in \{-1, +1\}$ is $\delta = y(\vec{w} \cdot \vec{x})$.

Definition: The margin is called geometric margin, if $||\vec{w}|| = 1$. For general \vec{w} , the term functional margin is used to indicate that the norm of \vec{w} is not necessarily 1.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a sample S is $\delta = \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x})$.

Definition: The (hard) margin of an unbiased linear classifier $h_{\vec{w}}$ on a task P(X,Y) is

 $\delta = \inf_{S \sim P(X,Y)} \min_{(\vec{x},y) \in S} y(\vec{w} \cdot \vec{x}).$

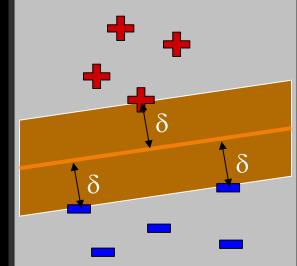
Hard-Margin Separation

• Goal:

 Find hyperplane with the largest distance to the closest training examples.

Optimization Problem (Primal):

$$\min_{\substack{\vec{w},b \\ s.t.}} \quad \frac{1}{2} \vec{w} \cdot \vec{w} \\ s.t. \quad y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 \\ \dots$$

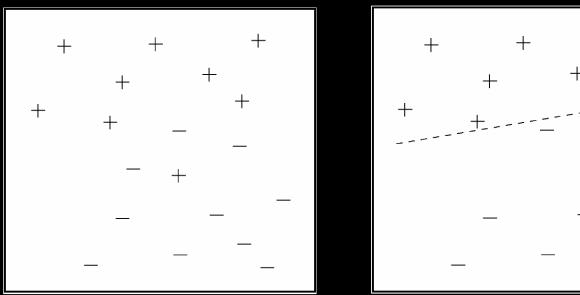


- Support Vectors:
 - Examples with minimal distance (i.e. margin).

 $y_n(\vec{w}\cdot\vec{x}_n+b)>1$

Non-Separable Training Data

- Limitations of hard-margin formulation
 - For some training data, there is no separating hyperplane.
 - Complete separation (i.e. zero training error) can lead to suboptimal prediction error.



Soft-Margin Separation

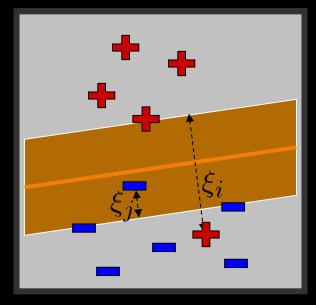
Idea: Maximize margin and minimize training

Hard-Margin OP (Primal): $\begin{array}{l} \min \\ \vec{w}, b \\ s.t. \\ y_1(\vec{w} \cdot \vec{x}_1 + b) \geq 1 \\ \dots \\ y_n(\vec{w} \cdot \vec{x}_n + b) \geq 1 \end{array}$

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$

- Slack variable ξ_i measures by how much (x_i, y_i) fails to achieve margin δ
- $\Sigma \xi_i$ is upper bound on number of training errors
- *C* is a parameter that controls tradeoff between margin and training error.

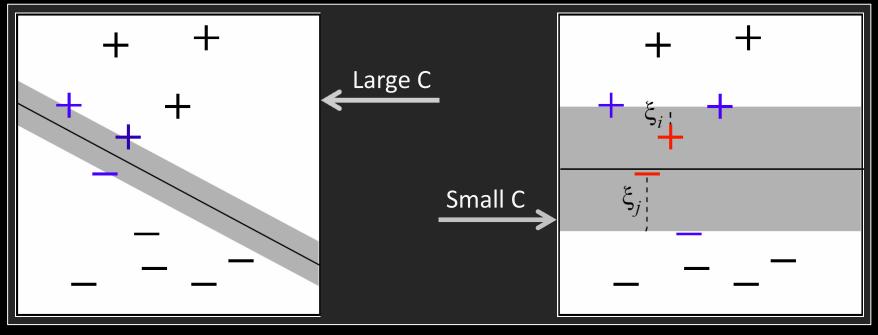


Controlling Soft-Margin Separation

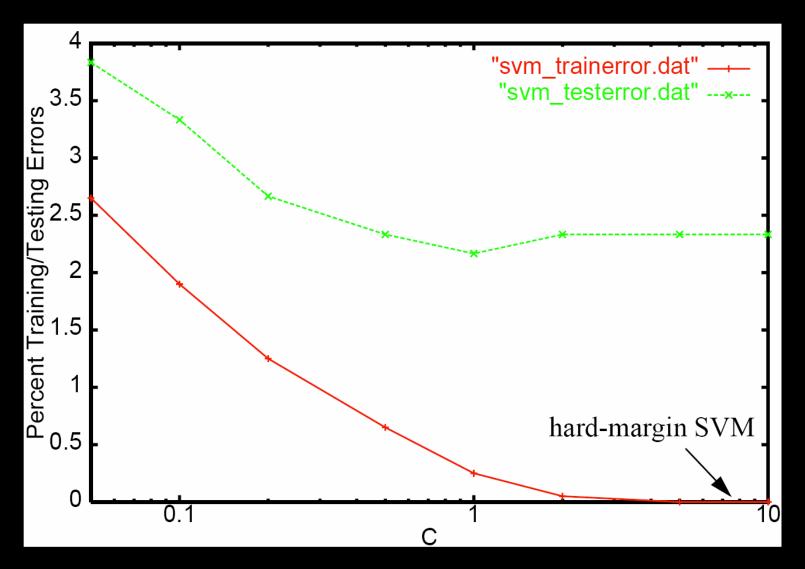
- $\Sigma \xi_i$ is upper bound on number of training errors
- C is a parameter that controls trade-off between margin and training error.

Soft-Margin OP (Primal):

$$\min_{\vec{w},\vec{\xi},b} \frac{1}{2} \vec{w} \cdot \vec{w} + C \sum_{i=1}^{n} \xi_i$$
s.t. $y_1(\vec{w} \cdot \vec{x}_1 + b) \ge 1 - \xi_1 \land \xi_1 \ge 0$
...
 $y_n(\vec{w} \cdot \vec{x}_n + b) \ge 1 - \xi_n \land \xi_n \ge 0$



Example Reuters "acq": Varying C



Example: Margin in High-Dimension

Training	\vec{x}							у
Sample S _{train}	x_1	x_2	x_3	x_4	x_5	<i>x</i> ₆	x_7	
(\vec{x}_{1}, y_{1})	1	0	0	1	0	0	0	1
(\vec{x}_2, y_2)	1	0	0	0	1	0	0	1
(\vec{x}_{3}, y_{3})	0	1	0	0	0	1	0	-1
(\vec{x}_4, y_4)	0	1	0	0	0	0	1	-1
	$ec{w}$							b
	<i>w</i> ₁	<i>w</i> ₂	w ₃	w ₄	<i>w</i> ₅	w ₆	<i>w</i> ₇	
Hyperplane 1	1	1	0	0	0	0	0	2
Hyperplane 2	0	0	0	1	1	-1	-1	0
Hyperplane 3	1	-1	1	0	0	0	0	0
Hyperplane 4	0.5	-0.5	0	0	0	0	0	0
Hyperplane 5	1	-1	0	0	0	0	0	0
Hyperplane 6	0.95	-0.95	0	0.05	0.05	-0.05	-0.05	0
Hyperplane 7	0.67	-0.67	0	0.33	0.33	-0.33	-0.33	0