Statistical Learning Theory: Generalization Error Bounds

CS6780 - Advanced Machine Learning
Spring 2015

Thorsten Joachims
Cornell University

Reading: Murphy 6.5.4 Schoelkopf/Smola Chapter 5 (beginning, rest later)

Outline

Questions in Statistical Learning Theory:

- How good is the learned rule after n examples?
- How many examples do I need before the learned rule is accurate?
- What can be learned and what cannot?
- Is there a universally best learning algorithm?

In particular, we will address:
What is the true error of h if we only know the training error of h ?

- Finite hypothesis spaces and zero training error
- Finite hypothesis spaces and non-zero training error
- Infinite hypothesis spaces and VC dimension (later)

Can you Convince me of your Psychic Abilities?

- Game
- I think of n bits
- If somebody in the class guesses my bit sequence, that person clearly has telepathic abilities - right?
- Question:
- If at least one of |H| players guesses the bit sequence correctly, is there any significant evidence that he/she has telepathic abilities?
- How large would n and $|\mathrm{H}|$ have to be?

Discriminative Learning and Prediction
Reminder

- Goal: Find h with small prediction error $\operatorname{Err}_{p}(h)$ over $P(X, Y)$. - Discriminative Learning: Given H, find h with small error $E r r_{S_{\text {train }}}(h)$ on training sample $S_{\text {train }}$
- Training Error: Error Err $_{\text {strain }^{\prime}}(h)$ on training sample.
- Test Error: Error Err Stest (h) on test sample is an estimate of $E r r_{p}(h)$

Useful Formulas

- Binomial Distribution: The probability of observing x heads in a sample of n independent coin tosses, where in each toss the probability of heads is p, is

$$
P(X=x \mid p, n)=\frac{n!}{r!(n-r)!} p^{x}(1-p)^{n-x}
$$

- Union Bound:

$$
P\left(X_{1}=x_{1} \vee X_{2}=x_{2} \vee \cdots \vee X_{n}=x_{n}\right) \leq \sum_{i=1}^{n} P\left(X_{i}=x_{i}\right)
$$

- Unnamed:

$$
(1-\epsilon) \leq e^{-\epsilon}
$$

Generalization Error Bound: Finite H, Zero Error

- Setting
- Sample of n labeled instances $S_{\text {train }}$
- Learning Algorithm L with a finite hypothesis space H
- At least one $h \in H$ has zero prediction error $E r r_{p}(h)=0\left(\rightarrow E r r_{S_{\text {train }}}(h)=0\right)$
- Learning Algorithm L returns zero training error hypothesis \hat{h}
- What is the probability that the prediction error of h is larger
than ε ?

Training Sample S
$\left(x_{1}, y_{l}\right), \ldots,\left(x_{n}, y_{n}\right)$
$\xrightarrow{S_{\text {train }}}$ Learner
Test Sample S
$\left(x_{n+1}, y_{n+1}\right)$.

Useful Formula

Hoeffding/Chernoff Bound:
For any distribution $P(X)$ where X can take the values 0 and 1, the probability that an average of an i.i.d. sample deviates from its mean p by more than ε is bounded as

