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Learning as Prediction:
Batch Learning Model

« Definition: A particular Instance of a Learning Problem
is described by a probability distribution P(X,Y).

* Definition: Any Example (X;,Y;) is a random variable
that is independently identically distributed according
to P(X,Y).

Training / Validation / Test Sample
* Definition: A Training / Test / Validation

Sample S = ((x1,y1), -, (Xp, ¥)) is drawn iid
from P(X,Y).

P(S = ((x1:}’1).---.(xnr}’n))) = HP(Xi =x,Y, =)
i=1

Risk

* Definition: The Risk / Prediction Error / True
Error / Generalization Error of a hypothesis h
for a learning task P(X,Y) is

Errp(h) = ) A(y,h(0) PX = .Y =)
xy

* Definition: The Loss Function A(y, ) € R
measures the quality of prediction ¥ if the
true label is y.

Empirical Risk

* Definition: The Empirical Risk / Error of
hypothesis h on sample

S = ((xl' yl)' ey (xn' yn))

Errg(h) = Z Ay, h(x;))
=1

Learning as Prediction
Overview
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Bayes Risk

* Given knowledge of P(X,Y), the true error of
the best possible h is

Errp (hbayes) =Expx) [1;211}(1 —PY =ylx= X))]

for the 0/1 loss.

Three Roadmaps for
Designing ML Methods

* Generative Model:
—Learn P(X,Y) from training sample.

* Discriminative Conditional Model:
Learn P(Y|X) from training sample.

* Discriminative ERM Model:
-> Learn h directly from training sample.

Empirical Risk Minimization

* Definition [ERM Principle]: Given a training
sample S = ((x1,¥1), -, (X, ¥n) and a
hypothesis space H, select the rule hERM € H
that minimizes the empirical risk (i.e. training

error)on S
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MODEL SELECTION
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¢ Note: Accuracy = 1.0-Error

Decision Tree Example: revisited

complete orrect} guessing =
— partial
o O

no

yes
o

unclear
clear




Controlling Overfitting
in Decision Trees

* Early Stopping: Stop growing the tree and
introduce leaf when splitting no longer
“reliable”.

— Restrict size of tree (e.g., number of nodes, depth)
— Minimum number of examples in node

— Threshold on splitting criterion

Post Pruning: Grow full tree, then simplify.

— Reduced-error tree pruning

— Rule post-pruning

Model Selection via Validation Sample
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Text Classification Example
“Corporate Acquisitions” Results

* Unpruned Tree (ID3 Algorithm):

— Size: 437 nodes Training Error: 0.0% Test Error: 11.0%
* Early Stopping Tree (ID3 Algorithm):

— Size: 299 nodes Training Error: 2.6%  Test Error: 9.8%
¢ Reduced-Error Pruning (C4.5 Algorithm):

— Size: 167 nodes Training Error: 4.0% Test Error: 10.8%
* Rule Post-Pruning (C4.5 Algorithm):

— Size: 164 tests Training Error:3.1% Test Error: 10.3%

— Examples of rules
« IFvs=1THEN - [99.4%)
* IFvs=0 &export =0 & takeover = 1 THEN + [93.6%]

MODEL ASSESSMENT

Evaluating Learned

- Hypotheses
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What is the True Error of a
Hypothesis?

* Given
— Sample of labeled instances S
— Learning Algorithm A
* Setup
— Partition S randomly into S, i, and S
— Train learning algorithm A on Strain, result is h.
— Apply h to S, and compare predictions against true labels.
¢ Test
— Error on test sample Errstest(ﬁ) is estimate of true error Err,(h).
— Compute confidence interval.

Binomial Distribution

* The probability of observing x heads (i.e. errors) in a
sample of n independent coin tosses (i.e. examples),
where in each toss the probability of heads (i.e. making
an error) is p, is

Normal approximation: For np(1-p)>=5 the binomial can
be approximated by the normal distribution with

— Expected value: E(X)=np Variance: Var(X)=np(1-p)
— With probability o, the observation x falls in the interval
E(X) i (X)

) 50% |68% |80% |90% |95% |98% |99%
z5 0.67 (1.00 |1.28 |1.64 |1.96 |2.33 (258

Is Rule h, More Accurate than h,?

* Given
— Sample of labeled instances S
— Learning Algorithms A; and A,
e Setup
and S,

— Partition S randomly into S, test

rain
— Train learning algorithms A; and A, on S,,,;,, result are h; and h,.
— Apply h; and h; to S, and compute Err,_(h,) and Errg,(h,).
e Test
— Decide, if Errp(h,) # Errp(h,)?
— Null Hypothesis: Errstmmi) and E”’smt(i'z) come from binomial
distributions with same p.

-> Binomial Sign Test (McNemar’s Test)

Is Learning Algorithm
* Given A1 better than AZ?

— ksamples S; ... S, of labeled instances, all i.i.d. from P(XY).
— Learning Algorithms A, and A,
* Setup
— Forifrom1tok
* Partition S; randomly into S,,,;, and S,
« Train learning algorithms A; and A, on S,,,,, result are h; and h,.
* Apply h; and A, to S, and compute Errg_ (h;) and Errg, ().

e Test
— Decide, if E(Errp(Ay(Strain))) # Es(Erre(Ax(Straind))?
— Null Hypothesis: Errg _(A;(Stqin)) and Errs,  (Ax(Siain)) come

from same distribution over samples S.
> t-Test or Wilcoxon Signed-Rank Test

Approximation via
o K-fold Cross Validation

— Sample of labeled instances S
— Learning Algorithms A, and A,
e Compute
— Randomly partition S into k equally sized subsets S; ... S,
— Forifrom1tok
* TrainA;and A,0onS; ... S,;S;,; .S, and get h; and h,.
* Apply h; and b, to S;and compute Errg(h,) and Errg(hy).
¢ Estimate
— Average Errsr_(fwl) is estimate of Eg(Errp(A(Siqin)))
— Average Errsl_(fwz) is estimate of Eg(Errp(A(Syqin)))
— Count how often Errg(h,)>Errg(h,) and Errg(h,)<Errs(h,)




