Supervised Batch Learning and Decision Trees

CS6780 – Advanced Machine Learning Spring 2015

> Thorsten Joachims Cornell University

Reading: Murphy 1-1.3, 2-2.6, 16.2

(One) Definition of Learning

• Definition [Mitchell]:

A computer program is said to learn from

- experience E with respect to some class of
- · tasks T and
- performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.

Supervised (Batch) Learning

	correct (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear)	binder (yes, no)	A+
1	complete	yes	yes	clear	no	yes
2	complete	no	yes	clear	no	yes
3	partial	yes	no	unclear	no	no
4	complete	yes	yes	clear	yes	yes

- Task:
- Learn (to imitate) a function f: X → Y (i.e. given x, predict y)
- Experience:
 - Learning algorithm is given the correct value of the function for particular inputs
 training examples (see table above)
 - An example is a pair (x, y), where x is the input and y=f(x) is the output of the function applied to x.
- Performance Measure:
 - Find a function h: X → Y predicts the same y as f: X → Y as often as possible.

Hypothesis Space

	correct (complete, partial, guessing)	color (yes, no)	original (yes, no)	presentation (clear, unclear)	binder (yes, no)	A+
1	complete	yes	yes	clear	no	yes
2	complete	no	yes	clear	no	yes
3	partial	yes	no	unclear	no	no
4	complete	ves	ves	clear	ves	ves

Instance Space X: Set of all possible objects described by attributes.

Target Function f (hidden): Maps each instance $x \in X$ to target label $y \in Y$.

Hypothesis h: Function that approximates f.

Hypothesis Space H: Set of functions we consider for approximating f.

Training Data S: Sample of instances labeled with target function f.

A Simple Strategy for Learning

- Strategy (later to be refined and justified):
 Remove any hypothesis from consideration that is not consistent with the training data.
- Can compute:
 - A hypothesis $h \in H$ such that h(x)=f(x) for all $x \in S$.
- Ultimate Goal:
 - A hypothesis $h \in H$ such that h(x)=f(x) for all $x \in X$.

Consistency

Definition: A hypothesis h is **consistent** with a set of training examples S if and only if h(x) = y for each training example $(x,y) \in S$.

 $Consistent(h, S) \equiv [\forall (x, y) \in S : h(x) = y]$

Version Space

Definition: The **version space**, $VS_{H,S}$, with respect to hypothesis space H and training examples S, is the subset of hypotheses from H consistent with all training examples in S.

 $VS_{H,S} \equiv \{h \in H | Consistent(h, S)\}$

List-Then-Eliminate Algorithm

- Init VS \leftarrow H
- For each training example (x, y) ∈ S
 – remove from VS any hypothesis h for
- Output VS

which $h(x) \neq y$

