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Sir Ronald Ross (1857-1932). Nobel Prize in Medicine (1902) for determining the life cycle of

the malaria parasite and the role of mosquitos in malaria transmission.
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Examples of epidemic curves
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Epidemic curves in Kermack-McKendrick model for disease without recovery.
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Deaths per week from plague in the island of Mumbai, December 17, 1905 to July 21, 1906

(from Kermack and McKendrick 1927)
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Aaron A. King, Edward L. Ionides, Mercedes Pascual, Menno J. Bouma. 2008. Inapparent

infections and cholera dynamics. Nature 454, 877-880.

(a) SIRS model

(b) Two-path model (inapparent

(Y ) and serious (I) infections)

(c) Environmental-phage model

Force of infection λ(t) includes

human-to-human transmission

and an environmental reservoir.



8Aaron A. King, Edward L. Ionides, Mercedes Pascual, Menno J. Bouma. 2008. Inapparent

infections and cholera dynamics. Nature 454, 877-880.

Simulated and actual cholera deaths
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Gonorrhea rate (cases per 100,000 population) in the US.

Source: CDC 2006 Sexually Transmitted Diseases Surveillance Report, at

www.cdc.gov/std/stats/toc2006.htm.
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Blower et al. (2000) model for emergence of ARV-resistant HIV

X =Susceptible

Y =infected: Treated or Untreated, Susceptible or Resistant Strain
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Model predictions versus empirical data (243 newly infected individuals in San Francisco with

no prior exposure to ARV drugs). Redrawn from Blower et al. (2003)

Boxes enclose interquartile range of model simulations with bar at the median

Triangles: estimated fraction resistant to non-nucleoside reverse transcriptase inhibitor

Crosses: estimated resistance to protease inhibitor
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C. T. Bergstrom, M. Lo, and M. Lipsitch. 2003. Ecological theory suggests that antimicrobial cycling will

not reduce antimicrobial resistance in hospitals. PNAS 101: 13285-13290.

X=No infection, S=Infected w/Susceptible strain, Ri=Infected w/drug i-Resistant strain.

Red=infection, yellow=supercolonization, blue=clearance, black=influx and efflux.
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C. T. Bergstrom, M. Lo, and M. Lipsitch. 2003. Ecological theory suggests that antimicrobial

cycling will not reduce antimicrobial resistance in hospitals. PNAS 101: 13285-13290.

Strain frequencies over time for cycling with drug switch every 90 days and 80% compliance.

Parameter values: β = 1, c = 0, Y = 0.03, m = 0.7, m1 = .05, m2 = .05, τ1 + τ2 = 0.5, µ =

0.1, σ = 0.25.
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C. T. Bergstrom, M. Lo, and M. Lipsitch. 2003. Ecological theory suggests that antimicrobial

cycling will not reduce antimicrobial resistance in hospitals. PNAS 101: 13285 - 13290.

Average total resistance as a function of cycle period, calculated numerically. Solid lines,

average total fraction of patients colonized with resistant bacteria under cycling; dashed lines,

total fraction of patients colonized with resistant bacteria under a 50-50 mixing regime.
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S. Bansal, B.T. Grenfell, L.A. Meyers. 2007. When individual behaviour matters: homogeneous and net-

work models in epidemiology Journal of The Royal Society Interface 4(6): 879 - 891.

(a) Regular random network with 15 nodes and mean=5, (b) Poisson random graph with 15 nodes and

mean=5, (c) Scale-free random graph with 100 nodes and mean=5, (d) Zachary Karate Club contact
network (Zachary 1977) with 34 nodes and mean=5 and (e) the sexual network for adolescents in a

Midwestern US town, with 287 nodes and mean=2. These networks do not contain spatial information;

layouts were chosen to facilitate visual comparisons.
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From Bansal et al. (2007). Comparison of homogeneous-mixing and network models on random networks. Networks have 10000 nodes
and mean degree of 10. (b,d,f,h) Grey lines, individual simulation runs; dotted black line, median of simulation runs. The network-based
models are pair approximation (Keeling 1999), percolation (Newman 2002), heterogeneous mixing (Moreno et al. 2002) and dynamical
PGF (Volz in press). In (a,c), all curves overlap. In (b), curves for homogeneous-mixing, pair approximation and dynamical PGF overlap.
In (d-h), curves for homogeneous-mixing and pair approximation overlap. In (e,g), curves for dynamical PGF and percolation completely
overlap. Percolation does not provide dynamical predictions and is thus not graphed in (b), (d), (f) or (h).
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Agent-based SIS model

Deterministic ODE model:

dS/dt = −β(t)SI + γI

dI/dt = β(t)SI − γI
(1)

Stochastic agent-based model:

Discretize time into short increments 0, τ, 2τ, 3τ, · · · .

To get from time t = nτ to time (n + 1)τ , see who changes state:

• each individual in S at time t tosses a coin with P(Heads)=β(t)I(t)τ

• each individual in I at time t tosses a coin with P(Heads)=γτ

• each individual who got Heads moves to the other compartment, giving new state variables

S(t + τ ), I(t + τ )

Exact (continuous-time) simulation also possible, by Gillespie algorithm
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Finite-population SEIR model with parameters for pre-vaccination measles in a city of 1 million, without

seasonal variation
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K.T.D. Eames and M.J. Keeling (2002) Modeling dynamic and network heterogeneities in the spread of

sexually transmitted diseases. PNAS 99: 13330-13335.

An example of the full contact network (Upper Inset) and a magnified section (main graph). Individuals

are placed at random at an average density of one per unit area. The probability kernel determining the

connection of two nodes (shown at the same scale as the full network in the Lower Inset) is the sum of a
localized Gaussian (whose height and breadth may be specified) and a fixed probability representing global

connections.
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L.A. Meyers, B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, R. C. Brunham. 2005. Network theory

and SARS: predicting outbreak diversity. Journal of Theoretical Biology 232: 71 81.

Schemata of: (A) urban, (B) power law, and (C) Poisson networks.
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Partial list of parameters for a Vortex model.

Required (all models)

Age at first breeding α males & females

Mating system

Maximum longevity

Mean % of adults breeding each year males & females

Variance in % breeding each year males & females

Maximum litter size M

Litter size distribution aj, j = 0, 1, · · ·M
Annual mortality px, x = 0, 1, · · · , p, males & females

Magnitude of environmental variability in survival, in fecundity

Correlation of environmental variability be-

tween survival and fecundity

% inbreeding depression due to recessive lethal

alleles

Optional

Frequency of catastrophes

Effect of catastrophes On survival, on reproduction

Number of populations

Which sexes disperse?

Which ages disperse?

Survival during dispersal

% of individuals dispersing

Effects of population density On survival, fecundity, dispersal,
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Advantages of network and other agent-based models

1. Easy to model individual differences in

• Spatial location

• Disease parameters (susceptibility, infectivity, duration)

• Which (and how many) individuals are regularly and persistently “linked”

• Behavioral “rules”

2. Easy to model stochasticity (individual “coin-tossing”)

3. Individuals often can be observed directly: go straight from data to a model based on observed rules,

rather than rates resulting from the rules.

Disadvantages (=research projects)

1. Realism ⇒ model can only be studied computationally. We can see what the model does, but it’s hard

to know why: what are the (analogs of) equilibria, eigenvalues/vectors, low-dimensional attracting

surfaces?

2. Lots of assumptions and parameters to estimate.

3. What is
∂R0

∂rule
? How to know which assumptions/parameters determine important predictions?

4. How can a model be simplified for better understanding, while preserving its essential properties?

Without answers to 3. and 4., 2. becomes a big problem: you have to make up a whole lot.


