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Goal: Quickly and accurately model the reflectance properties of 
real-world objects made up of multiple materials.

• Automatically acquire models (BRDFs) from images of 
an object.

• Account for variations of reflectance properties between 
different materials as well as within a given material.



• Light Field and Image Database Solutions
• Dense sampling of radiance values for known lighting 

conditions.
– Expensive to compute (images and time) and to store (tabular 

format).
– Does not account for spatial variation within materials.

• Fitting a reflectance model to a small set of radiance samples.

Previous Approaches



Proposed Solution
• Use fitted reflectance models to reduce the number of 

samples necessary.
• Generate a set of basis BRDFs for the object using a 

hierarchical clustering/fitting technique.
• Represent a unique BRDF for each point as a linear 

combination of the basis BRDFs.

1. Acquisition
2. Resampling
3. BRDF Fitting
4. Clustering
5. Projection
6. Rendering

Process:



Acquisition  

• An accurate 3D model of the object 
– Represented in the form of a triangle 

mesh with known vertex normals

• A set of images of the object
– The positions of the camera and the 

light source relative to the object must 
be known.

– HDR

The system requires the following input:

Tweety uses 14000 
triangles and 25 views.



Resampling
Generate sample points (lumitexels) on the mesh for which 
radiance values will be stored and BRDFs computed.

• For each triangle, sample points chosen as projections of the 
pixel centers from the best image of that triangle.



Each lumitexel contains:
• Position on the mesh
• Normal at that point (interpolated)
• A set of radiance samples

There is one radiance sample for each image in which the 
lumitexel is visible, containing:

• Direction to the light source
• Direction to the camera (both relative to the surface normal)
• Outgoing radiance (image color scaled by source brightness and 

squared distance)

Resampling



BRDF Fitting
Lafortune Model:
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Cx,i Cz,i – Determine off-specularity, retro/forward-reflectivity and 
albedo of the ith lobe

dρ – The diffuse component

Ni – The specular exponent

Parameters:

For more info see:

E. Lafortune, S. Foo, K. Torrance and D. Greenberg.  Non-Linear 
Approximation of Reflectance Functions.  In Proc. SIGGRAPH, pages 117-126, 
August 1997.



BRDF Fitting
Fitting the parameters of the model to a set of radiance 
samples is a non-linear least squares problem.

The standard approach to solving this problem for BRDF fitting 
is Levenberg-Marquardt optimization, which produces:

• An optimal set of parameters
• A covariance matrix of the parameters



BRDF Fitting
Given a lumitexel L and a BRDF fr we define the error of the 
approximation of the reflectance properties of that point to be:

I(r1, r2) measures intensity difference

D(r1, r2) measures color difference

s is a weight to compensate for noisy data
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Clustering
Find a set of clusters { Ci} and associated BRDFs { fi} such that each 
fi provides the best approximation for the set of lumitexels { Lk} i in Ci.

Input:
– Small proportion of the lumitexels, chosen to include samples most likely 

to be near specular phenomena in the image set.
– A user-specified number of materials M on the object.

Output:
– 2M-1 clusters and a BRDF representing the lumitexels in each cluster



Clustering Algorithm
Top-down, semi-hierarchical clustering:

initialize first cluster to contain all lumitexels
do

choose the cluster C with the largest error
split C into two new clusters
for every lumitexel Li

move Li to the cluster Cj st
endfor

until 2M-1 clusters are formed
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Splitting algorithm:
Given: cluster C, its lumitexels {Li} and its BRDF f

the largest magnitude eigenvalue and associated 
eigenvector     of the parameter covariance matrix

Create two new BRDFs:

do
for each lumitexel Li

if                            add Li to new cluster C1

else add Li to new cluster C2

endfor
refit f1 and f2 to lumitexels in C1 and C2, respectively

until the lumitexels in each cluster do not change

Clustering Algorithm
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Projection

1. Choose a basis of BRDFs for each cluster.

2. Project each lumitexel in a cluster into its basis.
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For each lumitexel Li in cluster Cj, we find a unique BRDF:
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• This is a linear least squares problem.
– The authors solve using SVD
– Constrain t to be non-negative



Projection
A set of basis functions for a cluster are chosen to minimize the 

following error function:

Authors solve using principal function analysis (PFA):
– Use following initial basis:

• fC, BRDF fit to the cluster C
• Two BRDFs defived from fC (�d and N perturbed)
• BRDFs of spatial neighbors of cluster
• BRDFs of similar materials

– Use Levenberg-Marquardt, refitting lumitexels to projection on 
each iteration.

– Experiments show initial basis usually an excellent 
approximation of a minimum of the error function.
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Rendering
What do you have?

Set of lumitexels with associated clusters and BRDFs
How can you use it?

– Authors use forward projection.
– Create texture maps for cluster membership and basis 

weights.



Results 

T (triangles)
V (views)
L (lumitexels)

R (samples/lumitexel)
C (clusters)
B (BRDFs per cluster)

C-RMS (error for per cluster BRDF)
P-RMS (error after projection)
F-RMS (error after PFA)
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