
Interactive Rendering of
Translucent Objects

Hendrik Lensch, Michael Goesele, Philippe
Bekaert, Jan Kautz, Marcus Magnor, Jochen Lang,

Hans-Peter Seidel

2003

Presented By: Mark Rubelmann

Outline

• Motivation

• Background

• Preprocessing

• Rendering

• Results

Motivation

• Translucent objects = subsurface scattering

• Calculating subsurface scattering is
expensive

• Observation: multiple scattering blurs and
smoothes radiance

Motivation

• Low frequency can be taken advantage of
– Global response

• Long distance
• Lots of scattering
• Radiance can be calculated sparsely and interpolated

– Local response
• Short distance
• Little scattering
• Need to maintain detail for small neighborhood

Background

• Full BSSRDF: 8 dimensions
–

• Diffuse subsurface scattering reflectance
function: 4 dimensions
–

),,,(ooii xxS ωω

),(oid xxR

Background

• Rd relates incoming flux to outgoing diffuse
radiance:

�

�

+Ω

←

→

⋅=

=

=

)(
),(),()(

),()()(

)(),(
1

),(

ix iiiitiii

S ioidio

ootoo

dNFxLxE

dxxxRxExB

xBFxL

ωωωηω

ωη
π

ω

Background

• Rd is very similar to G in radiosity
– Both are throughput factors (discrete version in

Galerkin radiosity is form factor)

• G only encodes geometric information;
storage costs are too high for relighting

• Rd maintains light transport properties
between any two points and can handle
dynamic lighting

Preprocessing

• Need discrete formulation of B(xo)

• Actually use 2 formulations with two sets of
basis functions
– Global basis: hat functions at object vertices

– Local basis: Piecewise-constant functions
corresponding to surface texels

Preprocessing - Geometry

• Split mesh up into chunks of nearly-planar
triangles and build 2D texture atlas

Preprocessing – Global Response

• Scattering over long distances is smooth

• Vertex-to-vertex throughput factors are used

�

� �
=

=⋅⋅≈

i
iji

g
j

S S jid
i

ijidij

FEB

vvR
A

dyydxxvvRF),(
3

)(~)(),(ψψ

Preprocessing – Local Response

• Use texel-to-texel throughput factors to
preserve details

• Modeled as 7 x 7 filter kernel

)),(),,((),(),(),(tsxvuxRvuAtsK ccdvu =

Preprocessing – Blending Local
and Global

• Adding local and global results in twice the
correct amount in direct illumination areas

Preprocessing – Blending Local
and Global

• Direct illumination found along diagonal of
form factor matrix F

• F0 is F without direct illumination

• B(x) found by introducing Bd

�=

++=

i
ij

g
i

g
j

gdl

FEB

xBxBxBxB
00

0)()()()(

Preprocessing – Blending Local
and Global

• Also need to blend border between local
and global

• Calculate “correct” radiosity by generating
9 x 9 kernel

• Adjust weighting of global radiosity to
minimize difference

Rendering

• Compute direct illumination map
– Implemented with vertex shader

• Split processing into two branches: global
and local

• Global and local responses combined by
multi-texturing in hardware

Rendering

Rendering – Global Response

• Find irradiance at each vertex

• Bg(y) at intermediate surface point y is
calculated by linear interpolation

• Surface radiosity can be modulated by
texture, Tp

)(ip

g
iT

i vT

B
B =

Rendering – Local Response

• Convolve illumination map with filter
kernel of every texel

�
×∈

=⊗=
77),(

),(),(),(),(),(),()(
ts

vuvu
l tsEtsKtsEtsKxB

• Initial implementation done in software

Results

• Renderings done on dual 1.7 GHz Xeon
with 1 GB RAM and GeForce3 video card

Results

Middle: simple blending Right: optimized blending

Results

Local response Global response Combined

Results

With and without modulating texture

Results

Skim milk?

