Practical Rendering of Multiple Scattering Effects in Participating Media

Simon Premoze, Michael Ashikhmin, Jerry Tessendorf, Ravi Ramamoorthi, and Shree Nayar

Goal

- Want to accurately and efficiently compute effects of multiply-scattered light
- Assumption: direct and single-scattered light handled separately

Experimental Validation

from Premoze et al, Practical Rendering of Multiple Scattering Effects in Participating Media

Laser beam shining into water with varying amounts of milk added

Problems

Very Slow

• From a few hours to a few days

Difficult to arrive at the obvious result

Important features of the solution

Radiative Transfer Equation

 Uses alternative (but equivalent) expression for radiative transfer

$$L(s, \mathbf{x}, \vec{\omega}) = \int_{\mathbb{H}^2} \int_{\mathbb{R}^3} G(s, \mathbf{x}, \mathbf{x}', \vec{\omega}, \vec{\omega}') L_0(\mathbf{x}', \vec{\omega}') \, \delta \mathbf{x}' \, \delta \vec{\omega}'$$

 G: Represents light at (x, ω) due to light emitted from (x', ω') following a path of length s

More on the Green Propagator

Idea: Break it into multiple pieces

- Direct / Single scattering events (G_d)
- Multiple scattering events (G_s)
- This paper: efficient approximation of G_s

Path Integral

- Express G_s as an integral over all paths
- Integration measure: infinite-dimensional path space (very messy math)
- Only a small number of paths are actually important
 - Call these the Most Probable Paths (MPP)
 - Sample over paths "near" to MPPs

Most Probable Paths

Most Probable Paths

Account for spatial spreading:

$$w(s) = \sqrt{\frac{\langle \theta^2 \rangle \ l \ s^2}{24(1 + \frac{\sigma_a \ l^2 \ \langle \theta^2 \rangle}{12\sigma_s})}}$$

• Angular spreading?

Inhomogeneous mediums

- Easy to adapt to inhomogeneous mediums (why?)
- MPPs are affected by heterogeneity

Algorithm

• Precomputation:

- Light attenuation in voxel space
- Blurred contribution per light
 - "light pyramid"
- (Inhomogeneous mediums) Scattering coefficient *l* per voxel per light
- Quick (~10 secs for 128³ voxels)

Algorithm

- Ray marching down viewing ray
- Approximate curved MPPs from light sources with line segment
- Calculate spatial spreading along path
- Look up multiple scatter in light volume based on spatial spread

Results

Left: New algorithm (10 minutes). Right: Monte Carlo (3 hrs)

(source: Premoze et al)

Results

Homogeneous medium (source: Premoze et al)

Results

The requisite Cornell Box (30 min) (source: Premoze et al)

Potential drawbacks

- Produces some noticeable differences w.r.t Monte Carlo
- Attenuation is a very rough approximation
- Precomputation per-light per-voxel
 - Prohibitively expensive for large numbers of lights?

Conclusions

- Very fast algorithm
 - Direct / single-scatter dominates render time
- Produces very nice (but not exact) results
- Works well for both homogeneous and inhomogeneous materials
- Still need to handle direct / single-scatter light separately

Questions?

More Math for the Strong of Heart

• Average square of the scattering angle: $\langle \theta^2 \rangle = 2\pi \int_{0}^{\pi} \theta^2 P(\vec{\omega}, \vec{\omega}') \sin \theta \, \delta\theta$

More Math for the Strong of Heart

$$L(\mathbf{x}, \vec{\omega}) = \int_{l} dl \exp(-\frac{c}{b} l(MPP_{l}) \exp(-A_{c}(MPP_{l})) P_{MS}(l, \vec{\omega} - \vec{\omega}') \times \int_{plane \perp MPP} gauss(\mathbf{x}', w(l)) L_{0}(\mathbf{x}', \vec{\omega}') \delta \mathbf{x}'$$