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6 INTRODUCTION VoL, 1

radiative transfer. The results will embody powerful exten-
sions which appear to be capable of solving--in principle and
in practice--every known current problem of applied radiative
transfer theory in the domains of the air and the sea.

As an aid in studying the present work Fig. 1.2 indi-
cates the logical interdependence of the various volumes and
chapters. Actually every chapter is connected in some way
with every other; however, some connections are stronger than
others, and these are shown in the diagram. Thus the prereq-
uisite most essential to understanding a given chapter is the
chapter (or chapters) which stand immediately above it via
the horizontal and vertical lines in the diagram. For exam-
ple Chapter 11 depends directly on 4,5, 7 and 10, while 6
depends directly only on 3. Furthermore, the chapters whose
contexts are developed on the level of general radiative
transfer theory (Fig. 1.1) are outlined in heavy boxes; those
that are more directly concerned specifically with hydrologic
optics (or the theory of stratified plane parallel media) are
outlined in the dashed boxes.

1.1 A Primer of Geometrical Radiometry and Photometry

After the solar radiant energy incident on the upper
levels of the atmosphere has rapidly percolated down through
the atmosphere and redistributed itself via scattering pro-
cesses throughout the lower reaches and in the upper layers
of the seas and lakes, its flow within these media assumes an
intricate, and relatively steady geometric pattern. A parti-
cularly useful mode of representation of this flow of scat-
tered radiant energy is possible by means of the concepts of
geometrical radiometry, whose definitions and interrelations
we shall now briefly study. A relatively complete and de-
tailed study of geometrical radiometry and photometric con-
cepts is reserved for Chapter 2.

The Nature of Radiant Flux

The radiant energy streaming in from the sun is under-
stood to be electromagnetic energy. The atomic radiative
processes of the sun generate a wide range of frequencies (or
wavelengths) of electromagnetic energy, only a small part of
which is visible to the human eye, or detectable by human
skin, or usable by the plants and animals of the earth. The
part of the electromagnetic spectrum visible to normal human
eyes lies essentially in the range from 400 to 700 millimic-
rons wavelength, the 400 mu light being deep blue-violet, the
700 mu light being deep red, with all the colors of the rain-
bow ranging continuously between these extremes. The wave-
length of electromagnetic energy evoking the greatest sensa-
tion of brightness is the yellow-green at 555 mu under normal
daylight conditions. If radiant energy of wavelengths much’
less than 400 or much greater than 700 muy fall on normal re-
tinas, there is relatively no conscious awareness of such an
event by the associated brain, though--in some extraordinary
cases, some ultra violet (380 mu) and some infra red (780 mu)
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phenomena are still within the range of detectability by the
human visual organs. By and large, however, the human visual
sensor system effectively samples and reacts to only the min-
ute portion of the whole outpouring of radiant energy by the
sun between 400 and 700 mu--much in the way that a taut wire
of given length and diameter resonates most sharply to a sin-
gle acoustic frequency and less sharply to the frequencies in
a small interval surrounding the central frequency, outside
of which the wire is essentially insensitive to the vibra-
tions. Figure 1.3 depicts the place of the visible portion
of the spectrum within the electromagnetic spectrum, along
with schematic diagrams of those portions of which we are a-
ware by means of various devices used to detect and measure
radiant energy. (Current manufacturer's catalogs should be
consulted for precise details of individual devices.) Any
observable part of the electromagnetic spectrum, observable
not only as visible light but also by suitable technical
means, falls under the aegis of geometrical radiometry.

The central construct of geometrical radiometry is
radiant fluxr which we define generally as the time rate of
flow of radiant energy of given wavelength (or frequency) a-
cross a given surface. (It has dimensions of (radiant) ener-
gy per unit time per unit frequency.) Thus radiant flux is a
time density* of radiant energy. For our present purposes
and in the exposition of radiative transfer theory, we may
imagine the flow of radiant energy to be in the form of mu-
tually non-interfering swarms of tiny colored particles--
which we call photons. While this may not correspond in all
aspects to physical reality, it nevertheless is a helpful
construct in practical work. Each photon contains a well
defined amount hv--a quantum--of radiant energy associated
with its color, or frequency v. This means of picturing ra-
diant energy for the purposes of geometrical radiometry is
quite useful and correct within the modern framework of phys-
ics. It will make the exposition of the notions of geomet-
rical radiometry a relatively simple task, and the visuali-
zations of the various concepts an almost trivial matter. In
the terminology of electromagnetic theory, we shall work with
electromagnetic fields produced by mutually incoherent
sources and which are studied on a macroscopic level, i.e.,
where the dimensions of the detectors are very large compared
to the observed wavelengths.

The Unpolarized-Flux Convention

The radiant flux always will be assumed unpolarized,
unless specifically noted otherwise. This will result in
simplified working formulas of relatively great practical val-
ue and of adequate accuracy in the pursuit of most applica-
tions of hydrologic ‘optics. Whenever it is necessary to in-
dicate how the theory may be elevated to the polarized level,

*

Because most of our discussions center on an arbitrary fre-
quency (or wavelength) of radiant flux, the reference to the
"per unit frequency'" part of the dimension of radiant flux
will be omitted, unless specifically noted otherwise.
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FIG. 1.3 The electromagnetic spectrum and the ranges of
some typical radiant energy detector domains.
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notes will be made to that effect. The general theory of po-
larized radiative transfer is outlined in Sec. 114 of Ref.
[251], and the problem of the relative consistency of the po-
larized and unpolarized theories is examined in Sec. 13.11,
below.

Geometrical Channeling of Radiant Flux

Once the nature of radiant flux is clarified, as above,
the descriptions of the remaining concepts, theorems and pro-
cedures of geometrical radiometry are essentially geometric
in nature. There are only two distinct, ideal modes of des-
cribing a flow of particles past a point in three dimensional
space, and these are shown in Fig. 1.4. In part (a) of the
figure a parallel flow of photons is described in terms of
the passage of particles through a small region S on a plane
normal to the flow around a point p on the plane. A comple-
mentary mode of the flow is in terms of the passage of parti-
cles through a small set D of directions around a given di-
rection £ and through the point p. Considering these two
modes in a given flow of photons, let P(S) and P(9) be the
radiant fluxes in each of these cases, with A(S) the area of
S and Q(D) the solid angle content of the bundle D of direc-
tions. Further, let the central direction £ of the bundle D
be normal to S at p. Then we write:

"P(S)/A(S)" for the area density of radiant flux

"p(D)/9(D)" for the solid angle density of radiant
flux
(a)
(b)
D
—— - um\\\\\\\\\ amme— o

FIG. 1.4 Two geometric modes of describing radiant flux,
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It is convenient in geometrical radiometry to call P(S)/A(S)
simply a (radiant) flux density and P(D)/Q(D) a (radiant)
intensity.

These are the two basic modes of conceptually channel-
ing the flow of photons in space or matter. There is an im-
portant third mode which is the result of the direct union of
these two modes, If we reconsider the setting of Fig. 1.4
and imagine a narrow bundle of directions D around a central
direction & normal to S at each point p of S, then there
would be an associated flow P(S,D) of radiant energy across
the combined set S x D of the surface set S and the direction
set D. We write:

"P(S,D)/A(S)Q(D)" for the phase density of radiant
flux

The term '"phase density" is simply a convenient descriptive
term for the combined areal and directional densities, and it
can be related to the phase space concept of classical sta-
tistical mechanics, though there is no need to do so here.
The conventional term for phase density of radiant flux, the
one we adopt for use in this work is radignce; it is radiance
which is used to describe the monochromatic brightness of
radiant flux.

Operational Definitions of the Densities

An operational definition of radiance and its companion
densities is effected by means of a radiant flux meter, de-
picted schematically in (a) of Fig. 1.5. A radiant flux
meter forms the heart of the radiance meter, as shown in (b)
of Fig. 1.5, and may embody any one of several means of meas-
urement of radiant flux, such as photoconductive, photoemis-
sive, or photovoltaic devices (see Sec. 2.1). Before the ra-
diant flux reaches the collecting surface S of the radiance
meter, it is filtered to the desired wavelength and is also
confined to flow onto S about point x through a narrow cir-
cular conical bundle D of directions whose central direction
£ is normal to S. A good radiance meter will have D so that
2(D) is as small as practicable. A magnitude of Q(D) < 1/30
steradians serves well for most geophysical optics tasks, If
the reading of the radiant flux meter is P(S,D) when it is
located at x and oriented by £ (see Fig. 1.5), then the as-
sociated radiance is P(S,D)/A(S)aQ(D), which we can denote by
"N(x,£)". Here "x" denotes where the flow is, and "g" de-
notes its direction. The associated radiant intensity is
P(S,D)/R(D) and the radiant flux density is P(S,D)/A(S).
These operational definitions reduce to a practical level the
ideal situations pictured in Fig. 1.4, They are ideal be-
cause in (a) of Fig. 1.4 the flow was assumed to be along a
single direction and in (b) the flow was assumed to be through
a single point. The operational definitions give workable
approximations to these ideals and form the basis for a rigor-
ous transition to the ideal 1limit, which will be made in
Chapter 2.
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FIG. 1.5 Operational definitions of the radiometric con-

cepts.




12 INTRODUCTION VOoL. I

Field and Surface Interprétations of Radiant Flux
and its Densities

In Fig. 1.4 one important fact about the radiant flux
was omitted, namely its sense of flow. In practice we often
find it useful to distinguish between the flow of radiant en-
ergy onto a surface S and from the surface S. When we do so,
the three central densities introduced above each have either
one of the two possible interpretations, according as the ra-
diant flux comprising the density is viewed as flowing onto
or from a surface. When radiant flux comes from the radio-
metric field and falls onto the collecting surface S of the
radiance meter we call the associated radiance the field ra-
diance. When the radiant flux is seen to leave a surface
(either real or imaginary) for the surrounding radiometric
field we use the term surface radiance. Similarly for radi-
ant flux density: when radiant flux falls onto a surface we
speak of the radiant flux density as the irradiance of the
flux at a point, and when the radiant flux density leaves S,
we speak of the radiant emittance of the radiant flux at a
point. Similarly also for (radiant) intensity: we have aur-
face (radiant) intensity and field (radiant) intensity. The
parenthesized "radiant" indicates that this adjective can be
omitted when radiant flux is understood to be the flux of in-
terest.

Operational Definitions of Field and Surface Quantities

We may summarize the preceding definitions in parts (c)-
(f) of Fig. 1.5. These diagrams emphasize the operational
procedures used to measure the various quantities in actual
radiometric environments.

Thus field radiant flux can be defined over the surface
S of the radiant flux meter for an incoming bundle D of direc-
tions. . The heavy arrows give the general sense of the flow.
When the meter is oriented so that at point x the inward unit
normal to its collecting surface is £, and D is opened up to
be the hemisphere EZ(£) of all directions &' such that
E+£'= cos 620 then by definition we measure the irradiance
at x for the orientation £ of the collector. The field (ra-
diant) intensity J{(x,£) and the field radiance N(x,g) are de-
fined analogously. It is important to emphasize that the Q(D)
in the latter two cases should be on the order of 1/30 of a
steradian or smaller for best results. The ‘'surface' coun-
-terparts to the preceding 'field' quantities may be pictured
by reversing the flux arrows in parts (c) to (f) of Fig. 1.5.

Figure 1.6 shows the details of how a surface radiance
may generally be assigned to a real or imaginary surface. We
use the radiance invariance law (Sec. 2.6) to assign to the
direction & at point p on S the radiance N(x,£) when p is
viewed by a radiance meter oriented as shown. This is a con-
sistent assignation since the radiance-invariance law states
that for a fixed £, N(x,£) is independent of y along a
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FIG. 1.6 The method of assigning radiances to real or
imaginary surfaces.

vacuous path between x and p. In this way each £ at p in the
outward hemisphere Z(n) of directions at p can be assigned a
radiance.

A useful property of irradiance is the eosine law,
which follows directly from the present operational consider-
ations. Fig. 1.7 shows a thin collimated steady stream of
photons incident normally on a small hypothetical plane sur-
face S. If P(S,D) is the radiant flux produced on S by this
stream, then this same flow P(S',D) exists across the surface
S' whose unit normal is tilted 6' from the direction of the
stream. The connection between the two irradiated areas is:

A(S') cos 8' = A(S)

FIG. 1.7 Deriving the cosine law for irradiance.
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FIG. 1.8 Logical lineage of the radiometric concepts.

Hence the connection between the irradiances on S' and S pro-
duced by the stream is:

P(S',D) . P(S.D)
A(S") A(S)

H(x,&') = H(x,£) cos @'

H(x,&') = cos 6' = H(x,&) cos 6"

That is,

which is a form of the cosine law for irradiance (the general
law is given in Sec. 2.8). The companion law to this for the
radiant emittance of S§' is:

W(x,E') = W(x,&) cos o'

Summary of Concepts and Some Principal Formulas
of Geometrical Radiometry

A schematic diagram of radiometric concepts, developed
in the manner described above, which summarizes the geometric
derivatives of radiant energy, along with their mks units,
and current standard symbols, is given in Fig. 1.8. The
names of the six concepts above, and their designating sym-
bols may come and go with the years, but the logical lineage
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of the concepts depicted above, with their tap root in the
concept of radiant energy and indicated branching structures,
will withstand the rigors of time. For while the names in the
boxes are transient conventions, the arrangement of the boxes,
and the underlying concepts for which the boxes stand are
simply manifestations of the way we naturally view radiant
energy and the flow of radiant energy in space and time. 1In
this sense the indicated conceptual scheme in Fig., 1.8 is im-
mutable. The full developments of the analytical connections
among the radiometric concepts are not needed in this intro-
ductory chapter, and are reserved for Chapter 2. However, a
brief survey of some of the main formulas of geometrical ra-
diometry is given here for convenient reference during the
remainder of this chapter's discussions.

The primary concept of geometrical radiometry in prac-
tice is the phase density concept, namely radiance, We find
it possible to describe all other concepts in terms of this
density. Thus for example in the case of the flux density
concept: .

H(x,E) = I N(x,E")E'-E dQ(E") (with field 1)
2(8) radiance)

W(x,&) = I N(x,E')E'+E dQ(E')  (with surface (2)
E(E) radiance)

H(x,£) is the irradiance at x on a surface whose inward nor-
mal is the direction £. The basis for (1), (2) rests in the
cosine law for irradiance and the possibility of the linear
superposition of radiant fluxes. The symbol "EZ(£)" stands
for the hemisphere of all directions &' such that £'-£ > 0,
(hence E(-£) is the hemisphere of all directions &' such
that £'+(-8) > 0, i.e., £'+& < 0). Here "dQ(g€')" is short for
"sin 8' do' d¢' ", where (8',4') define E' in some reference
frame. Of course £'.E is the scalar or dot product of the
directions £' and £. The representations of the solid angle
density in terms of radiance are not needed at present and
may be found, along with many related concepts, in Sec. 2.9.
We shall also find it convenient to introduce at this time
two cousins of the flux density concept, namely scalar and
veetor irradiance, defined, respectively, by writing:

"h(x)" for [_ N(x,£') da(g") (watt/m?) (3)

and:
"B for [ N(x,£0E' da(e)  (vatt/n?) (4)

Here £ is the set of all unit vectors (directions) in euclid-
ean three space. The scalar irradiance h(x) is the total ra-
diant flux per square meter coursing through point x in all

directions. It is related to radiant energy per cubic meter
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u(x) (the radiant deneity: Joules/m®) by means of the for-
mula:
v(x) u(x) = h(x) (5)

where v(x) is the speed of light at x (in m/sec). The quan-
tity H(x) is a vector; the indicated equation is really three
equations: one for each of the x, y, z components of H(x),
as given by the corresponding components of §'. The vector
H(x) also has units of watts per square meter: its magnitude
is the maximum net irradiance attainable as one samples all
possible directions £ of flow about x. The direction of H(x)
defines this direction of maximum net irradiance. The net
trradiance H(x,E) at x in the direction £ is defined as
H(x,&)-H(x,-£); see Sec. 2.8 for complete details.

It will be necessary in this introductory chapter to
also consider hemispherical sealar irradiance, defined by
writing:

"h(x,§)"  for f_(é)N(x,s') da(E")  (watt/m?)  (6)

"h(x,-£)" for [ N(x,E') dR(E') (watt/m?)  (7)
2(-£)

where, by (3), ;
: h(x) = h(x,&) + h(x,-E) (8)

for every £ in E. A convenient terrestrial reference frame
in hydrologic optics is that depicted in Fig. 1.9. We will
often use the special case of (6), (7) where £ = k, and we
shall write

"hz,+)" for h(p,*k) (9)

where we retain only the depth variable z of the usual
(x,Y,z)-coordinates of the point p. Corresponding to h(z,t)
we have the companions from (1) in which § = ik; we write

"H(z,*)" for H(p,%k) (10)

Irradiances associated with plus signs are upwelling (or up-
ward) irradiances; those with minus signs are downwelling (or
downward) irradiances. All these irradiances have units of
watt/m?. In natural hydrosols H(z,*) can be measured by
horizontal flat plate collectors, while h(z,*) can be meas-
ured by spherical collectors, suitably shielded (see Sec.
2.7). Some useful special cases of the preceding formulas
are the following.

Let N(x,£) be uniform, i.e., independent of £ at some
x and of magnitude N; then by (1)
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z
§'=(a,B,) t upward direction
a =sind' cos P’
B=sin8' sin ¢’ : 1 downward direction
y =cosf’
az +ﬁZ+72 =z

p=(x,y,2)
4

(measured positive
downward)

FIG. 1.9 The standard terrestrially-based coordinate sys-
tem in hydrologic optics.

H(x,£)= N[ "

n/2
E'ef dQ(E') = N I‘ I cos 6' sin 8' de'd¢’
2(8) ¢=0 /g=0
= 7N
which holds for all £ at x.

The computation was made with
the k axis momentarily shifted parallel to £. Further, from
(2), in the same way:

W(x,E) = =N (12)
for all £ at x. Next, by (3):
2w T
h(x)= N] do(g')= N[ I sin 8' de'de' = 44N
g ¢=0 Jg'=0

(13)

(11) .
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By (4)
H(x) = N[ £ da(g') = 0 (14)

[8¢]

By (6)
h(x,&) = 2wN (15)

Observe the effect of the cosine in the integrand: for a un-
iform radiance distribution at x, h(x,g)=2H(x,£), for every
g. Further examples are given in Sec. 2.11.

n?*-Law for Radiance

We mention in passing an important law of geometrical
radiometry concerning radiance: If # i an arbitrary photon
path through a transparent optical medium within which the
index of refraction n variee continuoualy with location, then
photon flux along the path & having radiance N moves such
that N/n® is invariant along the path (cf. Sec. 2.6). This
is the n?-law for radiance.

The Bridge to Geometrical Photometry

The conceptual bridge from geometrical radiometry to
geometrical photometry is built on the empirical fact that
not all wavelengths of radiant flux invoke the same sensation
of brightness in the human eye. The green-yellow wavelength
555 me is the brightest., In fact one would require, e.g.,
about 2 watts of blue-green light of 510 mp or 2 watts of
orange light of 610 mu to produce the same sensation of
_brightness as one watt of green-yellow light of 555 mu. The
photopic luminoeity curve depicted in Fig. 1.10 summarizes a
quantitative measure y(A) of the brightness-sensation produc-
ing capabilities of a wavelength A in the electromagnetic
spectrum. Observe that for wavelengths X below 400 mu and
above 700 mu, electromagnetic radiation no longer is seen by
normal human eyes. A fuller discussion of this curve is gi-
ven in Sec. 2.12, See also Sec. 1.8.

The conversion rule from a radiometric concept to its
photometric counterpart is based on the photopic luminosity
curve and is given as follows:

Let ¥ be any radiometrie concept (e.g., U, P, H, W, J,
or N) which ia defined over the electromagnetic spectrum.
Then the photometrie concept L (namely Q, F, E, L, I, or B,
respectively) associated with R is given by

X = 680!2 (N) F(A) dr
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FIG. 1.10 The photopic luminosity function.

If £2 has units watt/(*), then X2 has units lumen/(2), where
"(#)" stands for (meter) or (steradian) or various permissible
combinations of these geometrical units. For example,

B(x,&)= GSOI N(x,£,2) Y(x) dx , lumens/m? sr
0

This gives the luminance (loosely, the "brightness™) produced
by a given sample of radiance. This is what, in essence, we
can see as a result of the radiant flux of photons at x in
the direction £. Again, for example, illuminance is:

E(x,E)= GSOI H(x,E,2\) Y(A) dx , lumens/m?2
0

The logical interrelations among the photometric concepts pre-
cisely parallel those of radiometry. Thus, starting with 7y-
minous energy Q, which, according to the rule above, we de-
fine as:
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FIG. 1.11 Logical lineage of the photometric concepts.

-]
Q= 680[ U(A) Y(A) ax s

0
we then can construct a diagram similar to that in Fig. 1.8.
This is shown in Fig. 1.11. Consequently, everything we can
say about the geometrical properties of the radiometric con-
cepts, we can also say about the corresponding properties of
photometric concepts.

We mention in passing some classical alternate sets of
photometric units:

1 foot candle = 1 lumen/ft? (area density of flux) (16)
1 candela = 1 lumen/sr (solid angle density of flux)(17)

1 (centimeter) lambert = -11; lumen/cm? sr

1 (phase
1 (meter) lambert = % lumen/m? st density (18)
of flux)

1 (foot) lambert = %7 lumen/ft? sr
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From (17) we can compactly express luminance generally in
terms of candelas/m? when using the mks system (the preferred
system). The lambert unit arises as follows: let a surface,
which has both unit reflectance with respect to irradiance for
each wavelength and also a directionally uniform reflected
radiance for each wavelength, be called a perfeectly diffusing
surface, for short. By definition, a perfectly diffusing sur-
face irradiated by one lumen has a luminance of one lambert.
(Use Eq. (12).) However, the conversion rules above in (18)
are by convention now used under arbitrary directional and re-
flectance conditions.

Thus we have the general rule: To convert B(X,E) lu-
mens/m*sr to meter lamberts, multiply B(x,£) by w. (This fol-
lows from the fact that as defined above the meter lambert is
about 1/3 of a lumen/m?sr; so it takes about 3 meter lamberts
to every lumen/m?sr to describe the same scene.)

With due respect to the historical origins of the pre-
ceding terms, it is felt that the continued employment of
"foot candle” and "lamberts™ will serve no logical purpose.
Their mention here simply serves to keep open the passageway
to the classical literature of photometry and radiative trans-
fer theory to which we must refer now and then during this
work. New students are advised to use the lumen, meter, ste-
‘radian system of units in photometry, along with the watt,
meter, steradian system in radiometry in their future studies.
A convenient abbreviated mks unit of radiance is the (unra-
tionalized)*® herschel:

1 herschel = 1 watt/m?sr (19)
and an mks unit of luminance is the (unrationalized) blondel:
1 blondel = 1 lumen/m2sr (20)

These abbreviations should be used only when_ the sheer fre-
quency of mention of "watt/m?sr" or "lumen/m?sr" becomes so
great in a given discussion that facile communication is im-
paired; otherwise they simply should be spelled out in full
using watts, meters and steradians. Further discussion of
the foundations of photometry is given in Sec. 2.12.

—
An unrationalized radiance (or luminance) unit is one for
which a uniform radiance distribution of magnitude N produces
an irradiance of mN. A rationalized unit would assoclate to
a uniform N the irradiance N. An unrationalized radiance
unit is thus logically simpler than a rationalized unit, The
term "rationalized” here means "removed w-factor", It is ir-
rational to rationalize radiance units just because it is too
tiresome to carry around a w-factor which arises in calcula-
tions with radiance distributions which in fact do not occur
in practice in real environmments in the first place! (namely
directionally uniform distributions).



