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This thesis presents new mathematical and computational tools for the simula�

tion of light transport in realistic image synthesis� New algorithms are presented for

exact computation of direct illumination e�ects related to light emission� shadow�

ing� and �rst�order scattering from surfaces� New theoretical results are presented

for the analysis of global illumination algorithms� which account for all interre�ec�

tions of light among surfaces of an environment�

First� a closed�form expression is derived for the irradiance Jacobian� which is

the derivative of a vector �eld representing radiant energy �ux� The expression

holds for di�use polygonal scenes and correctly accounts for shadowing� or partial

occlusion� Three applications of the irradiance Jacobian are demonstrated	 locat�

ing local irradiance extrema� direct computation of isolux contours� and surface

mesh generation�

Next� the concept of irradiance is generalized to tensors of arbitrary order� A

recurrence relation for irradiance tensors is derived that extends a widely used

formula published by Lambert in �
��� Several formulas with applications in com�

puter graphics are derived from this recurrence relation and are independently

veri�ed using a new Monte Carlo method for sampling spherical triangles� The

formulas extend the range of non�di�use e�ects that can be computed in closed

form to include illumination from directional area light sources and re�ections from

and transmissions through glossy surfaces�



Finally� new analysis for global illumination is presented� which includes both

direct illumination and indirect illumination due to multiple interre�ections of

light� A novel operator equation is proposed that clari�es existing deterministic

algorithms for simulating global illumination and facilitates error analysis� Ba�

sic properties of the operators and solutions are identi�ed which are not evident

from previous formulations� A taxonomy of errors that arise in simulating global

illumination is presented
 these include perturbations of the boundary data� dis�

cretization error� and computational error� A priori bounds are derived for each

category using properties of the proposed operators�
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Chapter �

Introduction

One of the central problems of computer graphics is the creation of physically

accurate synthetic images from complete scene descriptions� The computation of

such an image involves the simulation of light transport� the large�scale interac�

tion of light with matter� Within computer graphics� the problem of determining

the appearance of an environment by simulating the transport of light within it is

known as global illumination� While direct simulations of this type are easier in

many respects than the inverse problems of computer vision� there remain many

unsolved problems� The di�culties arise from complex geometries and surface re�

�ections encountered in real scenes� and from the �mutual illumination� of objects

in a scene by interre�ected light� Fortunately� the predominant e�ects are time in�

variant and occur at scales much larger than the wavelength of visible light� which

permits simpli�ed models of light transport to be applied with little sacri�ce in

�delity� As a result� the physical principles that underlie global illumination come

primarily from geometrical optics� radiometry� and radiative transfer�

The current trend in image synthesis research toward increasing physical accu�

racy stems from a desire to make images that are not only realistic but are also

predictive� Prediction is clearly a requirement for applications such as architectural

and automotive design� One strategy for reliably predicting the appearance of a

�



�

hypothetical scene from its physical description is to �rst simulate the physics of

light transport� then approximate the visual stimulus of viewing the scene by map�

ping the result to a display device� Adhering to physical principles also makes the

process of realistic image generation intuitive� It is far easier to control a simulation

using familiar physical concepts than through arcane parameters�

The e�ectiveness of a synthetic image hinges on more than correct physics�

Other factors include characteristics of the display device such as nonlinearities and

limited dynamic range� the physiology of the eye� and even higher�level cognitive

aspects of perception� Nevertheless� it is the physical and computational aspects of

the problem that currently dominate the �eld� Consequently� global illumination is

largely the study of algorithms for the simulation of visible light transport� which

includes the processes of light emission� propagation� scattering� and absorption�

The central contributions of this thesis are �� an improved theoretical founda�

tion for the study of these processes� and �� a collection of new computational tools

for their simulation� In particular� methods of functional analysis are employed to

quantify the process of light transport� which allows for analysis of error� and e��

cient algorithms are developed for computing various aspects of illumination and

re�ection in simpli�ed settings�

��� Light Transport and Image Synthesis

This section summarizes the underlying physical principles and computational pro�

cedures of light transport and justi�es their application to the problem of global

illumination� Some historical context is also provided� both to clarify the origin of

the fundamental ideas� and also to emphasize connections with other �elds�

����� Physical Principles

Image synthesis involves the simulation of visual phenomena
 those that are ob�

servable by the eye or some instrument capable of discerning light intensity and
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frequency� This level of description is sometimes referred to as phenomenological

as it focuses on phenomena corresponding to the percepts of brightness and color�

There are many levels of physical description that can predict and explain the

phenomenology of light� Geometrical optics adequately describes several large�scale

behaviors of light� such as linear propagation� re�ection� and refraction� but does

not incorporate radiometric concepts that quantify light �
��� Physical optics is

based on Maxwell�s equations for electromagnetic radiation� which subsumes geo�

metrical optics and includes additional phenomena such as dispersion� interference�

and di�raction
 these e�ects can dominate at scales near or below the wavelength

of light� This level of description is also quantitative� However� physical optics

is overly detailed at large scales when the radiation �eld is incoherent� which is

true of macroscopic environments illuminated by common lighting instruments� or

luminaires�

A third level of description is known as the transport level
 in the context of

electromagnetic radiation� the study of transport processes is known as radiative

transfer ��������� Radiative transfer combines principles of geometrical optics and

thermodynamics to characterize the �ow of radiant energy at scales large compared

with its wavelength and during time intervals large compared to its frequency �����

����� Central to the theory of radiative transfer are the principles of radiometry
 the

measurement of light� This level of description is compatible with the phenomenol�

ogy of light without being overly detailed ������ which makes it appropriate to the

task of global illumination and image synthesis�

Radiative transfer does not explain all phenomena at the level of electromag�

netism or quantum mechanics� yet it may incorporate information from more de�

tailed physical descriptions such as these� More complete theories that operate

at microscopic scales can be used to predict �rst�order e�ects such as local scat�

tering and absorption� which enter into simulations at larger scales as boundary

or initial conditions� For instance� the re�ection model of He et al� ���� employs
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physical optics to characterize re�ection from rough surfaces
 the model can then

be incorporated into a global illumination algorithm operating at the transport

level ������ Another avenue by which physical optics can enter into the simulation

is through physical measurement� For instance� the re�ectance properties associ�

ated with boundaries �surfaces� may be obtained from samples of real materials

using a goniore�ectometer ��
���

Global illumination can also be placed within the much broader context of trans�

port theory ����������� a �eld encompassing all macroscopic phenomena that result

from the interaction of in�nitesimal particles within a medium� The macroscopic

behaviors of photons� neutrons� and gas molecules are all within its purview� The

unifying concepts of transport theory help to clarify the nature of global illumina�

tion and its relation to other physical problems ���� For instance� radiative transfer�

neutron transport� and gas dynamics all emphasize volume interactions� collisions

involving the three�dimensional medium through which the particles migrate� while

the boundary conditions are of secondary importance� In contrast� global illumi�

nation generally neglects volume scattering altogether but incorporates boundary

conditions that are far more complex in terms of geometry and surface scattering

distributions� This distinction gives the solution methods for global illumination

a unique character� Nevertheless� there are points of contact with other problems


for example� when a participating medium is included in global illumination� the

governing equation is virtually identical to that of neutron migration �
���

����� Computational Aspects

Many image synthesis techniques in use today are physically�based� yet none ac�

count for the entire repertoire of optical e�ects that are observable at large scales�

The failure is generally not in the physical model� but rather in the computational

methods� Nearly all the limitations result from the di�culty of faithfully represent�

ing the distributions of light scattering from real materials� and in accurately simu�
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lating the long�range e�ects of scattered light� To deal with this complexity� global

illumination algorithms frequently incorporate idealized re�ection models such as

Lambertian �ideal di�use�� specular �mirror�like�� or a combination of the two�

Both of these extremes are easy to represent and correspond to well�understood

computational procedures�

Ray tracing was introduced by Appel ��� and signi�cantly extended by Whit�

ted ��
�� to incorporate many of the principles of geometric optics
 however the

method neglects all multiple scatterings of light except those from mirror�like sur�

faces� The radiosity method� �rst applied to image synthesis by Goral et al� ����

����� accounts for multiple di�use interre�ections using techniques from thermal

engineering� yet it does not accommodate mirrored surfaces� Methods combin�

ing ray tracing and radiosity typically neglect more complex modes of re�ection�

such as glossy surfaces ������ Other techniques accommodate more complex sur�

face re�ections �
������������ but either su�er from statistical errors or fail to

handle extremely glossy surfaces
 in addition� none account for light scattering by

participating media such as smoke or fog� Of the methods that can account for par�

ticipating media� none can accommodate surfaces with locally complex geometry

or re�ectance functions ���������
���

In studying the computational aspects of global illumination� it is often conve�

nient to partition illumination into two components	 direct and indirect� By direct

illumination we mean the processes of light emission from luminaires �area light

sources�� propagation through space� and subsequent scattering at a second sur�

face� By indirect illumination we mean light that undergoes multiple scatterings�

Both of these aspects are global in that well�separated objects of a scene can in�u�

ence one another�s appearance� either by blocking light �casting shadows� in the

case of direct lighting� or by scattering light �re�ecting it� in the case of indirect

lighting�

The direct and indirect components of illumination o�er di�erent computational
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challenges� Techniques for direct illumination include modeling the distribution of

light emitted from luminaires ������
�� computing features of irradiance such as

shadow boundaries ����� and gradients ��
��� and modeling surface re�ections ��

�

���� Handling these e�ects is a prerequisite to simulating indirect illumination�

Indirect illumination is important to consider because a signi�cant portion

of the illumination in a room� for example� may come from multiply scattered

light ������ Both �nite element methods ����������� and Monte Carlo methods �
��

������� have been applied to the simulation of global illumination� which includes

both direct and indirect illumination�

The most signi�cant computational aspects of the �nite�element approaches for

global illumination are �� discretizing� �� computing element interactions� and ��

solving a linear system� Discretization includes surface mesh generation� which is

one of the more challenging problems of global illumination� Thus far� the most

e�ective meshing schemes have been based on adaptive re�nement� such as the

hierarchical scheme of Hanrahan et al� ����� a priori location of derivative discon�

tinuities� as proposed by Heckbert ���� and Lischinski et al� ����� or a combination

of the two� as proposed by Lischinski et al� �����

Computing element interactions is perhaps the most costly aspect of global

illumination� This is a signi�cant computational challenge because it involves a

potentially large number of multi�dimensional integrals over irregular domains�

Each multi�dimensional integral represents the transfer of light among discrete

elements and corresponds to a coupling term of the �nite element matrix� The

number of interactions can be large because they are non�local
 any element may

potentially interact with any other element� The regions are irregular because of

occlusion and local geometric complexity of surfaces� The integrals are minimally

two�dimensional� but may involve as many as six dimensions for non�di�use sur�

faces
 moreover� the integrands may be discontinuous due to changing visibility�

Owing to these complexities� the problem is frequently approximated using Monte






Carlo integration� There are virtually no tools available for solving these problems

analytically when non�di�use re�ection is involved�

Finally� every global illumination problem involves the solution of a linear sys�

tem at some level� Because the �nite element matrices can be large and dense� it

is important to exploit some structure of the matrix to speed its construction and

solution� For example� both block matrices ���� and wavelet representations ����

have been used for this purpose�

����� Historical Background

Global illumination draws from many �elds� two of which are of particular rele�

vance	 radiative transfer and illumination engineering� The origins and underlying

physical model of global illumination can be traced directly to the theory of radia�

tive transfer� while the aims and methodologies of global illumination are today

most closely aligned with those of illumination engineering�

The birth of radiative transfer theory is generally attributed to the astrophysi�

cal work of Schuster ����� and Schwarzschild ����� near the turn of the century� The

theory was initially developed for the study of stellar atmospheres� Among the �rst

problems encountered were the inverse problems of inferring physical properties of

a stellar atmosphere from the light it emitted� To solve the inverse problems it

was �rst necessary to obtain a governing equation for the direct process of radia�

tive transfer through a hot atmosphere� The resulting governing equation� known

today as the equation of transfer� is an integro�di�erential equation that describes

the large�scale time�averaged interaction of light with matter and accounts for

emission� absorption� and scattering� The emphasis in astrophysics� as in most en�

gineering applications� is on modeling interactions with participating media� With

the appropriate boundary conditions� however� the equation of transfer can also

account for arbitrary surface re�ections� which is the aspect that is emphasized in

global illumination�
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The concepts of radiative transfer have subsequently found application in areas

such as illumination engineering ������ thermal engineering ��������� hydrologic

optics ������ agriculture ���������� remote sensing �������� computer vision ������

and computer graphics ����� The equation of transfer was also the starting point

for the development of neutron transport theory� in which the di�usion of neutrons

through matter is governed by essentially the same principles as the di�usion of

photons through a participating medium ���������� This accounts for the many

similarities between solution methods for global illumination and simulated neutron

migration ������ particularly among Monte Carlo methods ����

��� Thesis Overview

The contributions of this thesis are both theoretical and practical� The theoretical

aspects of the work are an attempt to strengthen the mathematical foundation of

realistic image synthesis� Although computer graphics has drawn from a number

of related �elds with more developed foundations� many of the features unique to

this �eld are not yet well understood� For instance� numerous techniques have been

adopted from �nite element analysis� yet many fundamental questions concerning

the nature of the solutions in the context of global illumination have not been

addressed� New formalisms that begin to rectify this are presented�

The practical aspects of the work provide a number of useful computational

tools for image synthesis� The focus is on new closed�form solutions for a vari�

ety of sub�problems relating to direct illumination
 in particular� those involving

non�di�use emission and scattering� Previously� the few tools that existed for

computing illumination from area light sources were limited to di�use luminaires�

New expressions are derived here that accommodate luminaires with directionally

varying brightness
 these expressions permit us to handle a much larger class of

luminaires analytically�

Chapter � introduces the fundamental building blocks of radiometry that are
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used throughout the thesis� The concepts are developed in an untraditional manner

using the formalism of measure theory� The approach is inspired by the axiomatic

foundation of radiative transfer theory put forth by R� W� Preisendorfer ������ This

approach illustrates the origin of the most basic principles that underlie global

illumination�

Chapter � introduces a new tool that is derived directly from a widely�used

result attributed to Lambert� The tool is a closed�form expression for the derivative

of the irradiance �a measure of incident energy� due to di�use polygonal light

sources� The interesting aspect of the problem is in correctly handling occlusions�

The chapter describes the complication introduced by partial occlusion� provides

a complete solution for di�use polygonal luminaires� and demonstrates several

applications�

Chapter � introduces the most powerful tools of the thesis� A tensor gener�

alization of irradiance is proposed that leads to a number of new computational

methods involving non�di�use surfaces� The expressions derived in this chapter

allow a number of fundamental computations to be done in closed�form for the

�rst time� The new expressions and the algorithms for their e�cient evaluation

are independently veri�ed in chapter � by comparison with Monte Carlo estimates�

Chapter � introduces new theoretical tools for the study of global illumination�

The focus is on a new way to express the governing equation for global illumination

in terms of linear operators with very convenient properties� These properties lend

themselves to standard methods of error analysis� which are described in chapter 
�

This �nal chapter also discusses the sources of error in solving the new operator

equation� and relates these to existing global illumination algorithms�

Throughout the thesis the emphasis is on physical rather than perceptual as�

pects of light transport� This bias is re�ected in the consistent use of radiometric

rather than photometric units� which take the response of the human visual system

into account� Thus� the admittedly di�cult issues of display and perception are
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largely ignored� Moreover� this work does not address participating media� trans�

parent surfaces� time�dependent or transient solutions� or probabilistic solution

methods other than those used for independent veri�cation� The characteristics of

the problems considered here may be summarized as follows	


 Monochromatic radiometric quantities �radiance� re�ectivities� emission�


 A linear model of radiative transfer


 Direct radiative exchange among opaque surfaces


 Steady�state solutions


 Deterministic boundary element formulations

Many applications meet these restrictions because environments that we wish to

simulate frequently come from everyday experience� where these assumptions tend

to be valid� For instance� at habitable temperatures re�emission of absorbed light

by most materials is e�ectively zero at visible wavelengths� which permits us to

simulate di�erent wavelengths independently and also leads to a linear model of

light� Atmospheric e�ects over tens of meters are insigni�cant under normal cir�

cumstances� so we may assume that surfaces exchange energy directly with no

attenuation� Furthermore� because changes in our surroundings take place slowly

with respect to the speed of light� transient solutions are of little interest� Also�

since common sources of light are incoherent� e�ects related to phase� such as in�

terference� are usually masked� While di�raction and interference can be observed

in di�raction gratings as well as in natural objects such as butter�y wings and thin

�lms ������ these do not dominate architectural settings and other scenes that we

commonly wish to simulate�

Finally� this work focuses on deterministic algorithms primarily to limit the

scope� but also because deterministic methods are vital to Monte Carlo� Frequently

both the accuracy and e�ciency of Monte Carlo methods can be vastly improved
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by �rst solving a nearby problem deterministically and estimating the di�erence

stochastically� Thus� it is hoped that fundamental advances made for deterministic

algorithms will also be useful in the context of Monte Carlo� which usually has much

broader applicability�

��� Summary of Original Contributions

This section summarizes the original contributions of the thesis� which are orga�

nized into three major categories	 I� new derivations of basic physical quantities

such as radiance II� new methods for direct illumination involving both di�use

and non�di�use surfaces� and III� new tools for the analysis of global illumination�

Parts I and III are primarily of theoretical interest� while part II presents a number

of practical algorithms�

I� Derivations of Fundamental Physical Quantities �Chapter ��

The most fundamental quantity of radiative transfer� known as radiance� is

derived from macroscopic properties of abstract particles using formalisms from

measure theory� The new approach clari�es some of the assumptions hidden within

classical de�nitions and demonstrates deep connections with other physical quanti�

ties� Well�known properties of radiance� such as constancy along rays in free space�

are shown to hold using the new formalism�

II� Methods for Direct Illumination �Chapters �� �� and ��

Derivatives of Irradiance� A closed�form expression is derived for the Irra�

diance Jacobian �the derivative of vector irradiance� that holds in the presence of

occlusions� The new expression makes possible a number of computational tech�

niques for di�use polygonal scenes� such as generating isolux contours and �nding

local irradiance extrema� A new meshing scheme based on isolux contours is also

demonstrated�
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Irradiance Tensors� A natural generalization of irradiance is presented that

embodies high�order moments of the radiation �eld� The new concept is a useful

tool for deriving formulas involving moments of radiance distribution functions�

Extending Lambert�s Formula� Irradiance tensors are shown to satisfy a

recurrence relation that is a natural generalization of a fundamental formula for

irradiance derived by Lambert in the ��th century� The new formula extends

Lambert�s formula to non�di�use phenomena�

Moment Methods for Non
Lambertian Phenomena� Closed�form solu�

tions for moments of irradiance from polygonal luminaires are presented� along

with e�cient algorithms for their evaluation� The expressions are derived using

irradiance tensors� The new algorithms are demonstrated by simulating three dif�

ferent non�di�use phenomena� each computable in closed�form for the �rst time	

glossy re�ection� glossy transmission� and directional area luminaires�

Results on Non
polygonal and Inhomogeneous Luminaires� The prob�

lem of computing irradiance from spatially varying luminaires is reduced to that

of integrating rational polynomials over the sphere� A generalization of irradiance

tensors is introduced to handle rational moments� It is shown that these integrals

generally cannot be evaluated in terms of elementary functions� even in polygonal

environments�

Strati�ed Sampling of Solid Angle� A direct Monte Carlo sampling al�

gorithm for spherical triangles is derived� The method allows strati�ed sampling

of the solid angle subtended by a polygon� The algorithm is used to construct

a low�variance estimator for irradiance tensors and related expressions� providing

independent validation of the closed�form expressions�
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III� Analysis of Global Illumination �Chapters � and 
�

Linear Operator Formulation� A new operator formulation of the well�

known governing equation for global illumination is presented� and is shown to

be equivalent to the rendering equation� The new formulation cleanly separates

notions of geometry and re�ection� allowing these aspects to be studied indepen�

dently� Several related operators� such as adjoints� are easily analyzed using the

new operators�

Theoretical Bounds on Operators and Radiance Functions� Bounds

are computed for the new operators using principles of thermodynamics and basic

tools of functional analysis� Based on this analysis� it is shown that the process of

global illumination is closed with respect to all Lp spaces�

Taxonomy of Errors with a priori Bounds� Using the proposed linear

operators and standard methods of analysis� a priori bounds are computed for three

categories of error	 perturbed boundary data� discretization� and computation�



Chapter �

Particles and Radiometry

In this chapter we de�ne a number of fundamental radiometric quantities� that is�

concepts pertaining to the measurement of light that are essential to the study of

radiative transfer� Rather than enumerating standard de�nitions� we shall instead

deduce the important concepts starting from �observable� behaviors of particle�

based phenomena that we take as axioms� This approach will expose some of the

assumptions that are hidden within the classical de�nitions�

The simulation of any real process or phenomenon involves simplifying assump�

tions that a�ect both the physical model and its mathematical representation�

Physical assumptions are introduced to limit the scope of the problem� usually

by ignoring or altering known physical laws� This always involves a compromise

between what is desired and what can be e�ectively simulated� Mathematical

assumptions include those in which structure is imposed that is not necessarily

present in reality� For instance� a problem may be embedded in a richer math�

ematical framework so that well�understood methods of analysis can be applied�

Assumptions of both types are made in de�ning radiometric quantities�

The most common and far reaching mathematical assumption in radiometry is

that light and matter can be faithfully represented by continuous analogues� The

utility of this assumption is that it allows us to express new quantities in terms

��
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of limiting processes that can only be approximated by actual experiments� By

embedding the phenomena we wish to study in a continuum� we may employ all the

usual machinery of mathematical analysis� such as measure theory and di�erential

geometry� In the physical world� of course� the corresponding limiting processes

cease to make sense below a certain scale ����� Consequently� the mathematical

abstractions generally extend beyond the phenomena they model�

We shall begin with macroscopic time�averaged properties of light that are

theoretically observable by an eye or a laboratory instrument� and deduce the basic

concepts of photometry and radiometry
 that is� quantitative aspects of light that

are based on a continuum� We shall adopt the common simplifying assumption that

light may be adequately modeled as a �ow of non�interacting neutral particles ������

From elementary principles that operate at the macroscopic scale we then construct

functions that correspond to radiance and related quantities� which will be essential

building blocks in the chapters that follow�

Much of the large�scale behavior of particles can be understood in terms of

abstract particles with minimal semantics
 that is� particles with only those fea�

tures common to photons� neutrons� and other neutral particles� This observation

typi�es the point of view taken in transport theory� which is the study of abstract

particles and their interaction with matter ����� Transport theory applies classical

notions of physics at the level of discrete particles to predict large�scale statistical

behaviors� The emphasis on statistical explanations di�erentiates transport theory

from other classical theories such as electromagnetism� Essential to the theory are

several fundamental simplifying assumptions about the particles� For example� it

is assumed that �� the particles are so small and numerous that their statistical

distribution can be treated as a continuum� and �� at any point in time a particle

is completely characterized by its position� velocity� and internal states such as

polarization� frequency� charge� or spin �����
���

These assumptions lead naturally to the concept of phase space� an abstraction
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used in representing the spatial and directional distribution and internal states of

a collection of particles� We shall employ a continuous phase space whose points

specify possible particle states� A distribution of particles can then be represented

as a density function de�ned over phase space� The aim of transport theory is to

determine such a density function� commonly describing a distribution of particles

at equilibrium� based on individual particle behaviors as well as the geometrical

and physical properties of the medium through which the particles travel ��������

The setting of abstract particles is su�cient to deduce a primitive version of

radiance� as well as other radiometric quantities� using only measure�theoretic con�

cepts and elementary facts about the behavior of groups of particles� Each distinct

quantity corresponds to a di�erent form of channeling of the particles� with radi�

ance being the most fundamental for radiative transfer� To deduce the properties of

radiance� which will be needed in subsequent chapters� we must ultimately impose

further semantics on the abstract particles that will distinguish them as photons�

��� Phase Space Measure

Phase space is an abstraction used in many �elds to represent con�gurations of

discrete particles� Frequently the term connotes a �N �dimensional Euclidean space

with each point encoding the position and velocity of N distinct particles� A single

point of such a phase space completely speci�es the con�guration of all N particles�

and the time�evolution of the particles de�nes a space�curve �����

For many physical problems a phase space of far fewer dimensions su�ces�

which has both conceptual and computational advantages� For example� when the

particles cannot in�uence one another� their aggregate behavior may be determined

by characterizing the behavior of a single particle� Each phase space dimension

then represents one physical degree of freedom of a particle� with the space as a

whole representing all possible particle states� We shall assume that the particles

are independent� which implies that particles may interact with their surroundings
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but not with each other� This assumption is valid to very high accuracy for rare�ed

gases� neutrons� and photons when interference is ignored�

We shall further assume that particle�matter interaction� or scattering� consists

of collisions that are either perfectly elastic and perfectly inelastic� That is� a

particle either retains its original internal state after scattering� such as energy or

wavelength� or is completely absorbed� This precludes processes by which particles

migrate from one energy band to another
 for photons this may happen when a

particle is absorbed and re�emitted� as in blackbody radiation� phosphorescence�

and �uorescence�

In transport theory this simpli�cation is known as the one�speed assumption�

since speed is proportional to energy for most particles� and energy is assumed to

remain constant despite multiple collisions� When applied to photons� however�

the term implies constant wavelength rather than speed� Hence� this simpli�cation

is also known as the gray assumption in the context of radiative transfer ������

Finally� we assume that the particles possess no internal states other than en�

ergy or wavelength� which is �xed for all particles� Thus� we assume monochromatic

radiation and ignore phenomena such as polarization� Under these assumptions�

each particle has only �ve degrees of freedom	 three for position and two for direc�

tion� The corresponding ��dimensional phase space is

IP � IR� � S�� �����

where IR� is Euclidean ��space and S� is the unit sphere in IR��

The abstraction of a distribution of particles in phase space requires some ad�

ditional structure for the purpose of analysis� In order to quantify collections of

particles and de�ne various transformations� it is necessary to endow the space

with a measure� We therefore introduce the concept of phase space measure con�

sisting of the triple �IP�P� ��� where � is a positive set function� or measure� de�ned
on the elements of a set P� which is a ��algebra of subsets of IP� That is� P is

a collection of subsets that contains IP and is closed under complementation and
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countable unions ������ The elements of P are called the measurable sets�

We shall construct the phase space measure �IP�P� �� from the natural Lebesgue
measures on IR� and S�� which correspond to standard notions of volume and

surface area
 we shall denote these measures by v and � respectively� We then de�ne

� to be the product measure v�� and form the ��algebraP from the two component
��algebras� More formally� we de�ne P be the completion of the cartesian product

of the two ��algebras� which is again a ��algebra ����� p� ���� Completion simply

extends the collection of measurable sets to include those formed by a cartesian

product of an unmeasurable set with a set of measure zero�

Lebesgue measure is the appropriate abstraction to adopt here since it is in�

variant under rigid transformation and permits the consistent de�nition of a family

of useful function spaces� However� the use of such formalisms requires that the

domain of � be restricted to P� the ��algebra of subsets of IP� This restriction is
necessary in Euclidean spaces of three or more dimensions� where measures that are

de�ned on all subsets cannot possess certain essential properties� For example� such

measures cannot be invariant under rigid motions� a property we require of space

and the particles that travel through it� The Banach�Tarski paradox ���� is a more

colorful example of why such a restriction on the domain is necessary� This famous

result states that a measure de�ned on all subsets of Euclidean ��space must either

assign the same measure to all volumes� or allow unacceptable consequences �����


for example� one unit sphere could be decomposed into a �nite number of pieces

and reassembled into two identical spheres of the same volume ���
��

��� Particle Measures

Phase space measure applies only to the space on which the particles are de�ned

and not the distributions themselves� To quantify the distributions and relate

them to phase space measure we require several additional properties that apply

to collections of non�interacting particles� We shall identify four such properties�
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which we take to be axiomatic
 that is� we shall not provide explanations in terms

of more basic phenomena� These axioms closely parallel macroscopic properties of

real particles� although the abstractions transcend their physical counterparts in

several respects� The axioms lead naturally to the concept of a particle measure�

from which we may deduce basic properties of neutral particle migration that

underlie radiative transfer and other particle�based phenomena�

����� Particle Axioms

Phenomena such as radiation that arise from microscopic particles can exhibit

large�scale features only through the correlated motion of collections or ensembles

of particles� We may therefore express properties of particles that are relevant to

large�scale transport in terms of these ensembles� We shall consider four such prop�

erties that are motivated by physical intuition and correspond to real phenomena

that can be measured at the macroscopic scale� at least in principle ������ From

these properties we may deduce the existence of a density function over phase space

that exactly represents the con�guration of particles�

We begin by assuming the existence of a �eld of non�interacting one�speed

particles in space� Every region of space then has a particle content� a number

indicating how many particles exist within that region� This number may be

further partitioned according to the directions in which the particles move� By

associating values to subsets of space and direction we are de�ning a real�valued

set function over phase space� which we shall denote by E � We assert that E obeys
the following physically plausible axioms	

�A�� E 	 �IP � �����

�A�� A �B $ 
 $� E�A �B� $ E�A� % E�B�

�A�� ��A� �� $� E�A� ��

�A�� ��A� $ � $� E�A� $ �
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Here A and B are subsets of IP and� in the case of the last two axioms� A and B

must also be measurable with respect to �� Axiom A� states that E is a positive
set function de�ned on all subsets of the phase space IP
 to every subset there

corresponds a non�negative value indicating its particle content�

Axiom A� states that the set function E is additive� By repeated application
of this axiom E is clearly additive over any �nite collection of disjoint sets� When
applied to photons� this property illustrates a divergence of the phenomenological

formulation from physical optics� The electromagnetic description of light includes

e�ects that can violate the additivity property
 for instance� distinct volumes in

phase space may interact via interference� Thus� in the context of photon trans�

port axiom A� restricts us to incoherent sources of light� as interference can arise

whenever the illumination has some degree of coherence �����

Axioms A� and A� establish the only connection between the set function E
and the phase space through which the particles migrate� Speci�cally� axiom A�

states that every �nite volume of phase space has a �nite particle content� and

axiom A� states that a region of phase space with zero volume cannot contain

a meaningful number of particles� The latter axiom has important implications

as it simultaneously disallows two physically implausible situations
 point sources

and perfectly collimated thin beams� Because � is a product measure� axiom A�

implies that E�D�"� $ � when v�D� $ �� which is true at isolated points� or when
��"� $ �� which is true of any perfectly collimated beam� These properties greatly

in�uence the nature of radiometric calculations since any meaningful transfer of

energy will entail both spatial and directional integration�

����� Extension to a Measure

Axioms A��A� express macroscopic properties of particles by means of a set func�

tion E that is similar to a measure� With slight alterations to two of the axioms� E
can be made a genuine measure� Doing so will allow us to study radiance functions
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as elements of the standard Lp or Lebesgue function spaces� which are de�ned in

terms of the Lebesgue integral� Toward this end� we weaken A� by restricting its

domain� and strengthen A� to apply to in�nite sums over mutually disjoint sets�

Speci�cally� we replace axioms A� and A� with

�A��� E 	 P � �����

�A��� E
�
��
i��

Ai

�
$

�X
i��

E�Ai� for mutually disjoint fAig � P�

Axiom A�& only requires E to be de�ned on the ��algebra P� while axiom A�&

states that E is countably additive� In summary� axioms A�&� A�&� A�� and A�
taken together state that the function E is a positive countably additive set function
de�ned on a ��algebra� By de�nition then� E is a positive measure �����

With this interpretation of E � axiom A� now has additional signi�cance
 given

that E and � are both measures over the same ��algebra� axiom A� states that the

particle measure is absolutely continuous with respect to the phase space measure�

Absolute continuity de�nes an order relation on the set of measures over the same

��algebra� which is usually denoted by ��� ����� p� ����� The notation m� � m�

simply means that m��E� $ � whenever m��E� $ ��

Note that E�IP� need not be �nite since an in�nite number of particles may
exist within an in�nite volume of phase space without violating basic physical

principles� However� a particle measure will always possess the weaker property of

being ���nite
 that is� it is �nite on each element of some countable partition of

the domain ������ This follows immediately from axiom A� and the fact that the

phase space measure � is ���nite�

Given the abstraction of independent particles in a phase space IP equipped

with a measure �� axioms A�&� A�&� A�� and A� imply that the concept of particle

content coincides with the concept of a positive measure� We summarize this point�

which is largely a matter of de�nitions� in the following theorem�
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Theorem � �Existence of Particle Measures� Given a con�guration of non�

interacting one�speed particles in an abstract phase space IP with measure �� if the

particle content function E satis�es axioms A��� A��� A�� and A�� then E de�nes

a positive ���nite measure over IP with E � ��

We call the three�tuple �IP�P� E� the particle measure space� and E the particle

measure� The existence of measures analogous to E were taken as axiomatic by
Preisendorfer ���������
 here we have identi�ed the physical and mathematical

assumptions from which they may be deduced�

��� Phase Space Density

To characterize the distribution of particles in a continuous phase space� we require

a function known as phase space density de�ned over the space� We now show that

such a density function emerges naturally from the concept of particle measure


the central observations parallel the measure�theoretic development of radiative

transfer due to Preisendorfer ������

By theorem � the particle content of any A � P is given by a ���nite measure

that is absolutely continuous with respect to �� This characterization of particle

content is su�cient to deduce the existence of phase space density
 the �nal step

is provided by the Radon�Nikodym theorem ����� p� ��� ����� p� �����

Theorem � �Radon
Nikodym� Let �B�B� m� be a measure space over the set

B� and let � be a ���nite positive measure de�ned on the ��algebra B� If � � m�

then there exists a non�negative m�integrable function p such that

��E� $
Z
E
p dm �����

for all E � B with m�E� ��� Moreover� the function p is unique to within a set

of m�measure zero�
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The function p in the above theorem is commonly referred to as a density

function� While any non�negative function p can be used to de�ne a new measure

� by equation ������ the Radon�Nikodym theorem shows that under rather mild

conditions the converse also holds
 in particular� the density function p can be

recovered almost uniquely from the two measures m and �� provided that � � m�

Theorems � and � together imply the following theorem�

Theorem � �Existence of Phase Space Density� For every con�guration of

non�interacting one�speed particles in an abstract phase space IP with measure ��

there exists a ��measurable function n 	 IP� IR�� which is unique to within a set

of ��measure zero� satisfying

E�A� $
Z
A
n d�� �����

where E�A� denotes the particle content� and A � IP is a measurable subset�

The function n� whose existence is guaranteed by the above theorem� is called the

phase space density� By virtue of equation ������ this function is also referred to

as the Radon�Nikodym derivative of E with respect to �� since it exhibits algebraic
properties analogous to a standard derivative ����� To emphasize the similarity

with di�erentiation� it is typically denoted by

n $
dE
d�

� �����

which also suggests dimensional relationships� Since E�A� is dimensionless� n must
have the dimensions of inverse phase space volume� or m��sr��� We shall treat n

as a function of two variables and write n�r�u�� where r � IR� and u � S��

Phase space density makes no mention of material attributes such as mass

or energy
 these concepts do not enter until we assign physical meaning to the

particles� This abstract nature of phase space density makes it quite universal
 in

one form or another it underlies virtually all particle transport problems including

radiative transfer� neutron migration� and gas dynamics� When further semantics
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Figure ���	 Phase space density remains constant along straight lines in empty space�

but total phase space density decreases with the time�evolution of a region of phase space�

such as energy content are added to the particles� the meaning is inherited by the

resulting density function and is also re�ected in its physical units�

Part of the semantics of a particle is its behavior with time� We have assumed

neutral non�interacting particles� which implies that the particles travel in straight

lines� except when interacting with matter� This behavior is consistent with the

notions of geometrical optics� Another time�related semantic property is that par�

ticles travel at a �xed speed� which is true of monochromatic photons within a

uniform medium� These properties give rise to a crucial property of phase space

density that is inherited by concepts such as radiance�

Theorem � �Invariance of Phase Space Density� In steady�state� the phase

space density of one�speed particles is constant along straight lines in empty space�

Proof� We consider the time�evolution of a collection of neutral non�interacting

one�speed particles in a region of phase space� Let S be an arbitrary subset of IP�

and de�ne the time�evolution operator Et by

Et�S� � f �r% tvu�u� 	 �r�u� � S g � �����

where v is the constant speed of the particles� This function de�nes a new set by

expanding the spatial component of S in the direction of travel of its particles�



��

leaving the set of directions unchanged� Thus� any particle whose position and

direction of travel are within the set S at time t� will also be in the set Et�S�

at time t� % t� Similarly� by conceptually reversing the direction of travel of the

particles we see that any particle in Et�S� at time t� must have been in the set S

at time t� � t� Note that particles arriving from other directions may exist within

the spatial extent of Et�S� at time t�� but these do not contribute to the content

of Et�S�� It follows that Et�S� contains exactly those particles previously existing

in S� See Figure ���a� In steady state this equality holds at all times� Thus�

E�S� $ E�Et�S�� �����

for all t � � such that the particles of S encounter no matter� Consequently�Z
S
n�r�u� d� $

Z
Et	S


n�r�u� d� $
Z
S
n�r% tvu�u� d� ���
�

for all S � P and t � � provided that the evolution of S into Et�S� takes place in

empty space� When these conditions are met� equation ���
� yieldsZ
S
�n�r�u�� n�r% tvu�u�� d� $ �� �����

which implies that n�r�u� $ n�r % tvu�u� for almost all r � IR� and u � S� such

that the points r and r % tu are mutually visible
 that is� separated by empty

space� ��

The classical demonstration of the above invariance principle proceeds by equat�

ing the radiant energy passing consecutively though two di�erential surfaces or

portals �������� Here we have reached the same conclusion by considering the time

evolution of arbitrary ensembles of particles within a phase space�

This invariance principle has important implications� For example� under the

given assumptions� the directional derivative of phase space density must be zero

in every direction and at all points in empty space� This is equivalent to

u � rn�r�u� $ �� �����
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where the gradient is with respect to the spatial variable� As we shall see� this fact

also causes derivatives of related quantities to vanish�

The invariance of phase space density along lines is not shared by other closely

related quantities� For instance� consider the quantity known as total phase space

density� which is de�ned by

bn�r� � Z
S�
n�r�u� d��u�� ������

where � is the canonical measure on the sphere ���� p� �
��� Given a bounded set

S � P� the total phase space density must everywhere decrease in the set Et�S�

when t is su�ciently large� This follows from that fact that bn�r� is bounded above
by the product of the solid angle subtended by S at r and the maximum phase

space density attained within S� See Figure ���b� A number of quantities related

to bn are introduced in chapter �� where we investigate moments of radiance�
��� Phase Space Flux

It is frequently more convenient to characterize the density of particles by their

rate of �ow across a real or imaginary surface� To develop this idea we shall now

proceed using traditional heuristic arguments based on in�nitesimal quantities�

u

dω

ds

dA

Figure ���	 Phase space �ux is the number of particles crossing the surface dA perpen�

dicular to u per unit area� per unit solid angle� per unit time�
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Consider the particles that pass through a di�erential area dA in time dt with

directions of travel within a di�erential solid angle d� about the surface normal�

All of the particles are contained within the volume dA ds� where ds $ v dt� as

shown in Figure ���� Assuming that r is a point within this volume� the particle

content of the volume is given by

n�r�u� dA ds d�� ������

But the particles can also be counted using the rate at which they cross the surface

dA� That is� the particle content of the volume dA ds is also given by

v n�r�u� dA d� dt� ������

since ds $ v dt� This method of counting the particles� which substitutes a tem�

poral dimension for a spatial dimension� motivates the notion of phase space 	ux�

denoted �� which is de�ned by

��r�u� � v n�r�u�
�

�

m� sr s

�
� ������

The concept of phase space �ux can be used to express virtually any quantity

relating to the macroscopic distribution of particles�

��� Radiance

Radiance is the physical counterpart to the physiological concept of brightness or

intensity� and is the most ubiquitous concept in radiometry� We denote the radiance

at the point r and in the direction u by f�r�u�� At the macroscopic scale� this

function completely speci�es the distribution of incoherent monochromatic radiant

energy in the medium
 consequently� all radiometric quantities may be de�ned in

terms of radiance�

To de�ne radiance from phase space �ux we need only introduce the concept of

energy per particle� given by h�� where h is Planck�s constant and � is frequency�
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(a) (b) (c)

r r

Figure ���	 There is no distinction between incoming and outgoing rays at points in

space� At surfaces the radiance distribution is naturally partitioned into surface radiance

�outgoing� and �eld radiance �incoming��

We then have

f�r�u� � h� ��r�u�

$ ch� n�r�u�� ������

where c is the speed of light� Radiance therefore has the units of joules�m� sr sec�

or equivalently� watts�m� sr�

Radiance is de�ned at all points in space and in all directions� as is phase

space �ux� However it is convenient to de�ne several restrictions of the radiance

function� We shall adopt the terminology of Preisendorfer ����� in naming these

restrictions� When the point r � IR� is �xed� the function of direction f�r� �� is
called the radiance distribution function at the point r
 this function is de�ned at

all points in space as well as on surfaces� Note that a radiance distribution function

is distinct from a radiant intensity distribution� which is a mathematical construct�

with the units of watts�sr� that characterizes a point light source� We shall not

make use of the latter concept here�

When r is constrained to lie on a surface� r � M� the surface tangent plane

naturally partitions the radiance distribution function at each point into two com�

ponents corresponding to incoming and outgoing radiation� We de�ne surface

radiance to be the radiance function restricted to a given surfaceM and to direc�
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Figure ���	 The surface P and its spherical projection ��P ��

tions pointing away from the surface
 by de�nition it is zero elsewhere� Similarly�

we de�ne �eld radiance to be the other half of the radiance function restricted to

M
 that is� the component with directions pointing toward the surface� See Fig�

ure ���� The directions that are exactly tangent to the surface are to be ignored in

both cases� as they comprise a set of measure zero are physically meaningless�

��� Irradiance

Additional radiometric quantities can be de�ned in terms of radiance by means of

weighted integrals over various domains� To de�ne irradiance and related quanti�

ties� we require a convenient notation for solid angle� Let P � IR� be a surface

and consider its projection onto the unit sphere centered at the point x� as shown

in Figure ���� Formally� we de�ne its spherical projection 
x�P � by


x�P � � f u � S� 	 x% tu � P for some t � � g � ������

The solid angle subtended by the surface P can be de�ned in terms of this operator�

If � is Lebesgue measure on the sphere� then ��A� is the surface area of any

measurable subset A � S�� The solid angle subtended by the surface P with

respect to the point x � IR� is then ��
x�P ��� the surface area of its spherical

projection� Since we may always select a coordinate system in which the center of



��

projection x is at the origin� we shall omit the point x without loss of generality�

which will simplify notation�

The quantity known as irradiance is a density function de�ned at surfaces
 it

corresponds to the radiant power per unit area reaching the surface at each point�

which is the most basic characterization of the illumination reaching a surface� We

denote irradiance by ��r�� where r � M� By de�nition

��r� �
Z
�i

f�r�u� cos � d��u�
�
watts

m�

�
� ������

where "i is the hemisphere of incoming directions with respect to the surface at

the point r� and f�r�u� denotes a monochromatic �eld radiance function� The

angle � within the integral is the incident angle of the vector u with respect to the

surface at r� Thus� cos � $ ju � n�r�j� where n�r� is the unit normal to the surface
at r� The presence of the cos � accounts for the fact that an incident pencil of

radiation is spread over larger areas near grazing� thereby decreasing the density

of its radiation� This fact is sometimes called the cosine law ������

Given the role of the surface normal in the above de�nition� it is convenient to

introduce a new vector�valued function  �r� de�ned by

 �r� �
Z
S�
u f�r�u� d��u�

�
watts

m�

�
� ����
�

The new function is called the vector�irradiance ����� at the point r
 other common

names for the same quantity are light vector ���� and net integrated 	ux ����� This

vector quantity does not depend on surface orientation and is de�ned at all points

in IR�� It corresponds to the time�averaged Poynting vector of the electromagnetic

�eld ��������� The resulting vector �eld over IR� is known as the light �eld ����� It

follows from equations ������ and ����
� that

��r� $ �n�r� �  �r�� ������

when only �eld radiance is considered
 that is� when the vector irradiance does

not include light re�ected or emitted from the surface� Furthermore� from equa�



��

tion ����� it follows that

r �  �r� $
Z
S�
u � rf�r�u� d��u� $ �� ������

A function with zero divergence is said to be solenoidal �����

Both radiant exitance and radiosity have de�nitions similar to that of irradiance

and share the same units
 that is� watts�m�� The di�erence is that the domain of

integration is the outgoing hemisphere rather than the incident hemisphere� The

semantic di�erence between these two quantities is that radiant exitance refers to

emitted light� while radiosity includes both emitted and re�ected light�



Chapter �

Derivatives of Irradiance

A perennial problem of computer graphics is the accurate representation of light

leaving a surface� In its full generality� the problem entails modeling both the local

re�ection phenomena and the distribution of light reaching the surface� Frequently

the problem is simpli�ed by assuming polyhedral environments and Lambertian

�di�use� emitters and re�ectors� With these simpli�cations the remaining chal�

lenges are to accurately model the illumination and shadows resulting from area

light sources and occluders� and to simulate interre�ections among surfaces�

Many aspects of surface illumination have been studied in order to accurately

model features of the incident or re�ected light� In previous work� Heckbert ����

and Lischinski et al� ���� identi�ed derivative discontinuities in irradiance and used

them to construct e�ective surface meshes� Nishita and Nakamae ���
����� lo�

cated penumbrae due to occluders in polyhedral environments� while Teller �����

performed an analogous computation for a sequence of portals to locate antipenum�

brae� Ward and Heckbert ��
�� and Vedel ����� estimated irradiance gradients by

Monte Carlo ray tracing� and used them to improve the interpolation of irradiance

functions� Vedel ���
� also computed the gradient analytically in unoccluded cases�

Salesin et al� ����� and Bastos et al� ���� employed gradients to construct higher�

order interpolants for irradiance functions� Drettakis and Fiume ���� estimated

��
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gradients as well as isolux contours from a collection of discrete samples and used

them to guide subsequent sampling� placing more samples where the curvature of

the isolux contours was large� for example� Drettakis and Fiume ���� and Stewart

and Ghali ���
� proposed methods for incrementally computing visible portions of

a luminaire to increase the e�ciency of many of the above methods�

This chapter introduces a new computational tool that applies to di�use poly�

hedral environments and is useful in any application requiring derivatives of irra�

diance� The central contribution is a closed�form expression for the derivative of

vector irradiance �as de�ned in chapter ��� which is termed the irradiance Jacobian�

The new expression properly accounts for occlusion and subsumes the irradiance

gradient as a special case�

��� Introduction

The irradiance at a point on a surface due to a polyhedral luminaire of uniform

brightness can be computed using a well�known formula due to Lambert� In this

chapter we derive the corresponding closed�form expression for the irradiance Jaco�

bian� the derivative of the vector representation of irradiance� Although the result

is elementary for unoccluded luminaires� within penumbrae the irradiance Jaco�

bian must incorporate more information about blockers than is required for the

computation of either irradiance or vector irradiance� The expression presented

here holds for any number of polyhedral blockers and requires only a minor exten�

sion of standard polygon clipping to evaluate� To illustrate its use� three related

applications are brie�y described	 direct computation of isolux contours� �nding

local irradiance extrema� and iso�meshing� Isolux contours are curves of constant

irradiance across a surface that can be followed using a predictor�corrector method

based on the irradiance Jacobian� Similarly� local extrema can be found using a

gradient descent method� Finally� iso�meshing is a new approach to surface mesh

generation that incorporates families of isolux contours�
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In Section ��� we derive the irradiance Jacobian for polygonal luminaires of

uniform brightness starting from a closed�form expression for the vector irradiance�

In previous work the same closed�form expression was used in scalar form by Nishita

and Nakamae ���
� to accurately simulate polyhedral sources� and by Baum et

al� ���� for the computation of form factors� which relate to energy transfers among

surface patches� Section ��� introduces a method for characterizing changes in the

apparent shape of a source due to di�erential changes in the receiving point� which

is the key to handling occlusions� In Section ��� basic properties of the irradiance

Jacobian are discussed� including existence and the connection with gradients�

To illustrate the potential uses of the irradiance Jacobian� Section ��� describes

several computations that employ irradiance gradients� We describe a method for

direct computation of isolux contours� which are curves of constant irradiance on

a surface� Each contour is expressed as the solution of an ordinary di�erential

equation which is solved numerically using a predictor�corrector method� The

resulting contours can then be used as the basis of a meshing algorithm� Finding

local extrema is a related computation that can be performed using a descent

method�

����� Lambert�s Formula

For sources of uniform brightness�  can be expressed analytically for a number

of simple geometries including spheres and in�nite strips ����� Polygonal sources

are another important class with known closed�form expressions� and are the fo�

cus of this chapter� Suppose P is a simple planar polygon in IR� with vertices

v�� v�� � � � � vn� If P is a di�use source with constant radiant exitanceM �watts�m���

then the light �eld due to P is given by

 �r� $
M

��

nX
i��

�i�r� �i�r�� �����

where ��� � � � ��n are the angles subtended by the n edges as seen from the vantage

point r� or equivalently� the arclengths of the edges projected onto the unit sphere
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Figure ���	 The vector irradiance at point r due to a di�use polygonal luminaire P can

be expressed in closed form� The contribution due to edge k is the product of the angle

�k and the unit vector �k�

about r� The vectors ��� � � � ��n are unit normals of the polygonal cone with cross

section P and apex at r� as shown in Figure ���� For any � � k � n the functions

�k and �k can be written

�k�r� $ cos
��

�
vk � r

jj vk � r jj �
vk�� � r

jj vk�� � r jj
�
� �����

and

�k�r� $
�vk � r�� �vk�� � r�

jj �vk � r�� �vk�� � r� jj � �����

where jj � jj is the Euclidean norm and vn�� � v�� Equation ����� most commonly

appears in scalar form� which includes the dot product with the surface normal ����

�����
�� With M $ �� the corresponding expression � �r� �n�r� is the form factor

between a di�erential patch at r and the polygonal patch P � Equivalent expressions

have been independently discovered by Yamauti ������ Fok ����� and Sparrow ������

However� as noted by Schr'oder and Hanrahan ������ the scalar expression appeared
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much earlier in Lambert�s treatise on optics� published in �
�� ����� Henceforth�

equation ����� shall be referred to as Lambert�s formula�

The light �eld de�ned by Gershun ����� and described in chapter �� is a true

vector �eld� That is� the vector irradiance due to multiple sources may be ob�

tained by summing the vector irradiance due to each source in isolation� Thus�

polyhedral sources can be handled by applying equation ����� to each face and

summing the resulting irradiance vectors� Alternatively� when the faces have equal

brightness� equation ����� can be applied to the outer contour of the polyhedron

as seen from the point r� as described by Nishita and Nakamae ���
�� Partially

occluded sources can be handled similarly� by summing the contributions of all

the visible portions� Determining the visible portions of the sources in polyhedral

environments is analogous to clipping polygons for hidden surface removal ��
���

The closed�form expression for vector irradiance in equation ����� provides an

e�ective means of computing related expressions� such as derivatives� In the re�

mainder of the chapter we derive closed�form expressions for derivatives of the

irradiance and vector irradiance due to polyhedral sources in the presence of oc�

cluders� and describe several applications�

��� The Irradiance Jacobian

If the function F 	 IR� � IR� is di�erentiable� then its derivative DF is represented

by a � � � Jacobian matrix� We shall denote the Jacobian matrix of F at r by

Jr�F �� That is�

Jr�F � � DF �r� $

�
�Fi�r�

�xj

�
� �����

In this section we derive the Jacobian matrix of the vector irradiance� which we

shall call the irradiance Jacobian� when the illumination is due to a di�use polyg�

onal luminaire� The obvious approach to obtaining an expression for Jr� � in this

case is to simply di�erentiate equation ����� with respect to the point r
 this is a
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blocker B

blocker A

A

B

polygonal source

receiver r

Figure ���	 The irradiance at point r due to source P is the same with either blocker�

but the slopes of the irradiance curves are di�erent�

straightforward exercise that can be performed by a symbolic di�erentiation pack�

age� for example� The resulting expression will be valid for unoccluded polygonal

luminaires� but not for partially occluded luminaires�

To see why the irradiance Jacobian is more di�cult to compute when blockers

are present� consider the arrangement in Figure ���� First� observe that the irra�

diance at the point r can be computed by applying equation ����� to the visible

portion of the source� which is the same in the presence of either blocker A or

blocker B� Although the common expression can be di�erentiated� the resulting

derivative does not correspond to the irradiance Jacobian� To see this� observe

that the two blockers produce irradiance functions with di�erent slopes at r
 the

blocker closest to the receiving plane produces the sharper shadow� which implies

a larger derivative� Consequently� the irradiance Jacobians must also di�er in the

two cases to account for blocker position�

To derive an expression that applies within penumbrae� we express  �r� in

terms of vertex vectors� which correspond to vertices of the spherical projection of
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v1

(b)(a) (c)

vertex vector

v2

P

B

v1

r rv2

B

P P

Figure ���	 �a� The view from r of the two types of �intrinsic� vertices� �b� The vertex

vector for the unoccluded source vertex v�� �c� The vertex vector for the blocker vertex

v�� whose projection falls within the interior of P �

the polygon� as depicted in Figure ���� Vertex vectors may point toward vertices of

two distinct types	 intrinsic and apparent� An intrinsic vertex exists on either the

source or the blocker� as shown in Figure ���� An apparent vertex results when the

edge of a blocker� as seen from r� crosses the edge of the source or another blocker�

as shown in Figure ���� We shall express Jr� � in terms of derivatives of the vertex

vectors� Since a vertex vector is a mapping from points in IR� to unit vectors� its

derivative is a ��� matrix� which we call the vertex Jacobian� The vertex Jacobians
account for the geometric details of the vertices� which yields a relatively simple

closed�form expression for Jr� �� even in the presence of occluding objects�

Let v��� v
�
�� � � � � v

�
m be the vertices of P

�� the source P after clipping away portions

that are occluded with respect to the point r� Without loss of generality� we may

assume that P � is a single polygon
 if it is not� we simply iterate over the pieces�

The vertex vectors u��r�� u��r�� � � � � um�r� are de�ned by

uk�r� � v�k � r

jj v�k � r jj � �����

To simplify notation we also let w��r�� � � � � wm�r� denote the cross products

wk�r� � uk�r�� uk���r�� �����

Henceforth� we assume that uk and wk are functions of position and omit the
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v2
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Figure ���	 �a� The view from r of the two types of �apparent� vertices� �b� The vertex

vector for v� results from a blocker edge and a source edge� �c� The vertex vector for v�

results from two blocker edges�

explicit dependence on r� Expressing �k and �k in terms of wk� we have

�k $ sin
�� jjwk jj � ���
�

and

�k $
wk

jjwk jj � �����

Note that equation ���
� is equivalent to equation ����� only for acute angles


that is� only when uk � uk�� � �� Nevertheless� because the new expression for

�k simpli�es some of the intermediate expressions that appear below� it will be

retained for most of the derivation� The restriction to acute angles will eventually

be removed� however� so that the �nal result will apply in all cases�

To compute J� � in terms of the vertex Jacobians J�u��� � � � �J�um� we �rst

consider the kth term of the summation in equation ������ Di�erentiating� we have

J��k�k� $ �kr�k %�kJ��k�� �����

where �kr�k is the outer product of the vector �k and the gradient r�k� We

now compute r�k and J��k�� For brevity� we shall denote the vertex vectors uk
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and uk�� by a and b respectively� and the cross product a � b by w� Then the

gradient of �k with respect to r is

r�k $ r sin�� jjw jj

$
�p

�� wTw

�
wT

jjw jj
�
J�w�

$

�
wT

aTb

�
J�w�

jjw jj � ������

Similarly� di�erentiating �k with respect to r we have

J��k� $ D

�
w

jjw jj
�

$
J�w�

jjw jj �
wwT

jjw jj�J�w�

$

�
I� wwT

wTw

�
J�w�

jjw jj � ������

From Equations ���
��������� we obtain an expression for J��k�k� in terms of J�w�

and the vertex vectors a and b	

J��k�k� $

�
w

jjw jj
�
wT

aTb

�
% sin�� jjw jj

�
I� wwT

wTw

��
J�w�

jjw jj �

If the factor of sin�� jjw jj is now replaced by the angle between a and b� or cos��aTb�
then the expression will hold for all angles� removing the caveat noted earlier� The

above expression may be written compactly as

J��k�k� $ E�a� b� J�a� b�� ������

where the function E is the edge matrix de�ned by

E�a� b� �
�
�

aTb

�
wwT

wTw
%
cos�� aTb

jjw jj
�
I� wwT

wTw

�
� ������

In equation ������ we have retained w as an abbreviation for a � b� Because the

edge matrix contains no derivatives� it can be computed directly from the vertex
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vectors a and b� To simplify the Jacobian of a�b� we de�ne another matrix�valued

function Q by

Q�p� �

	




�
� pz �py

�pz � px

py �px �

�




� � ������

Then for any pair of vectors p and q� we have p � q $ Q�p�q� Writing the cross

product as a matrix multiplication leads to a convenient expression for the Jacobian

matrix of F �G� where F and G are vector �elds in IR�� Thus�

J�F �G� $ Q�F �J�G��Q�G�J�F �� ������

Applying the above identity to equation ������� summing over all edges of the

clipped source polygon P �� and scaling by M���� we arrive at an expression for

the irradiance Jacobian due to the visible portion of polygonal source P 	

J� � $
M

��

mX
i��

E�ui� ui��� �Q�ui�J�ui����Q�ui���J�ui�� � ������

This expression can be simpli�ed somewhat further by collecting the factors of

each J�ui� into a single matrix� We therefore de�ne the corner matrix C to be the

matrix�valued function

C�a� b� c� � E�a� b�Q�a�� E�b� c�Q�c�� ����
�

Then the �nal expression for the irradiance Jacobian can be written as a sum over

all the vertex Jacobians transformed by corner matrices	

J� � $
M

��

mX
i��

C�ui��� ui� ui��� J�ui�� ������

where we have made the natural identi�cations u� � um and um�� � u�� Note that

each corner matrixC depends only on the vertex vectors� and not their derivatives�

All information about changes in the visible portion of the luminaire due to changes

in the position r is embodied in the vertex Jacobians J�u��� � � � �J�um�� which we

now examine in detail�
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��� Vertex Jacobians

To apply equation ������ we require the vertex Jacobians� which we now construct

for both unoccluded and partially occluded polygonal sources� First� observe that

each vertex vector u�r� is a smooth function of r almost everywhere
 that is� u�r�

is di�erentiable at all r � IR� except where two or more edges of distinct polygons

appear to coincide� as described in section ���� Di�erentiability follows from the

smoothness of the Euclidean norm and the fact that the apparent point of intersec�

tion of two skew lines varies quadratically in r along each of the lines ������ From

this it is evident that the vertex Jacobian exists whenever the real or apparent

intersection of two edges exists and is unique�

vertex

r

u

drdu
change in�

vertex vector

change in�
position

Figure ���	 A di�erential change in the position r results in a change in the unit vertex

vector u� The locus of vectors du forms a disk� or more generally� an ellipse in the plane

orthogonal to u�

When the vertex Jacobian exists� it can be constructed by determining its

action on each of three linearly independent vectors
 that is� by determining the

instantaneous change in the vertex vector u as a result of moving r� Di�erential

changes in u are orthogonal to u and collectively de�ne a disk� or in the case

of partial occlusion� an ellipse� See Figure ���� The rates of change that are

easiest obtain are those along the major and minor axes of the ellipse� which are

the eigenvectors of the vertex Jacobian� We �rst treat intrinsic vertices and then

generalize to the more di�cult case of apparent vertices�
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����� Intrinsic Vertices

Suppose that u is the vertex vector associated with an unoccluded source vertex�

as shown in Figure ���b� In this case the vertex Jacobian J�u� is easy to compute

since it depends solely on the distance between r and the vertex� which we denote

by �� Moving r in the direction of the vertex leaves u unchanged� while motion

perpendicular to u causes an opposing change in u� The changes in u are inversely

proportional to the distance �� This behavior completely determines the vertex

Jacobian� Thus� we have

J�u� $ � �
�
�I� uuT� � ������

where the matrix I� uuT is a projection onto the tangent plane of S� at the point

u� which houses all di�erential motions of the unit vector u� The same reasoning

applies to vertex vectors de�ned by a blocker vertex� as in Figure ���c� In this case

� is the distance along u to the blocker vertex�

����� Apparent Vertices

Within penumbrae� apparent vertices may be formed by the apparent crossing of

non�coplanar edges� The two distinct cases are depicted in Figure ���� Let u be

the vertex vector associated with such a vertex� where the determining edges are

segments of skew lines L� and L�� Let s and t be vectors parallel to L� and L��

respectively� as depicted in Figure ���� As in the case of intrinsic vertices� moving

r toward the apparent vertex leaves u unchanged� so J�u�u $ �� To account for

other motions� we de�ne the vectors bs and bt by
bs � �I� uuT� s

bt � �I� uuT� t�

which are projections of s and t onto the plane orthogonal to u� Now consider

the change in u as r moves parallel to bs � as shown in Figure ���a� In this case
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the apparent vertex moves along L� while remaining �xed on L�� Therefore� the

change in u is parallel to bs but opposite in direction to the change in r� If �t is
the distance to L� along u� we have

J�u� bs $ � bs
�t
� ������

Evidently� bs is an eigenvector of J�u� with associated eigenvalue ����t� A similar
argument holds when r moves along bt � as shown in Figure ���b� Here the apparent
vertex moves along L� while remaining �xed at L�� If �s is the distance to L� along

u� we have

J�u� bt $ � bt
�s
� ������

which provides the third eigenvector and corresponding eigenvalue� Collecting

these relationships into a matrix equation� we have

J�u�
h bs bt u

i
$

�
� bs
�t

�
bt
�s

�

�
� ������

It follows immediately that whenever the lines L� and L� are distinct and non�

colinear as viewed from the point r� then

J�u� $ A

	




�
����t

����s
�

�




�A�� ������

where A �
h bs bt u

i
� Note that equation ������ reduces to equation ������ when

�s $ �t� Equation ������ therefore su�ces for all vertex vectors� but the special

case for intrinsic vertices can be used for e�ciency�

����� Polygon Depth�Clipping

To compute the irradiance or vector irradiance at a point r� it su�ces to clip all

sources against all blockers� as seen from r� and apply equation ����� to the resulting

vertex lists� This operation is also su�cient to compute the corner matrices and
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Figure ���	 The vertex Jacobian J�u� with respect to two skew lines L� and L� is found

by determining how the vertex vector u changes as r moves parallel to �a� the vector bs �
and �b� the vector bt �
the vertex Jacobians at unoccluded source vertices� However� the vertex Jacobians

for the cases illustrated in Figures ���c� ���b� and ���c all require information about

the blockers that is missing from traditionally�clipped polygons� Speci�cally� the

distances to the blocker edges that de�ne each vertex are needed to form the

matrices in Equations ������ and �������

Thus� additional depth information must be retained along with the clipped

polygons for use in computing vertex Jacobians� Here we propose a simple mecha�

nism� called depth clipping� by which the required information appears as additional

vertices� The idea is to construct the clipped polygon using segments of source and

blocker edges and joining them by segments called invisible edges� which cannot be

seen from the point r� See Figure ��
� The resulting non�planar contour is identical

to that of the traditionally�clipped polygon when viewed from r� Each invisible

edge de�nes a vertex Jacobian of the form in equation ������
 the end points of

such an edge encode the two distances from r while the adjacent edges provide the

two directions� Each vertex that is not adjacent to an invisible edge produces a

vertex Jacobian of the form in equation �������
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blockers
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Figure ��
	 �a� Source P is partially occluded by two blockers as seen from r� �b� The

vector irradiance at r due to P can be computed using the simply�clipped polygon� �c�

The irradiance Jacobian at r requires the depth�clipped polygon�

The depth�clipped polygon and the radiant exitance M completely specify the

irradiance Jacobian� Most polygon clipping algorithms can be extended to generate

this representation using the plane equation of each blocker� The depth�clipped

polygon also illustrates the geometric information required for the computation of

irradiance Jacobians�

��� Properties of the Irradiance Jacobian

In this section we list some of the basic properties of the irradiance Jacobian�

beginning with existence� By de�nition� the Jacobian Jr� � exists wherever  

is di�erentiable� which requires the existence of each directional derivative at r�

Because we consider only area sources� the variation of  is continuous along any

line except when a blocker is in contact with the receiving surface� Instantaneous

occlusion causes discontinuous changes in the vector irradiance� In the absence

of contact occlusions� the variation of  is not only continuous but di
erentiable

everywhere except along lines where edges appear to coincide
 that is� points at

which a source or blocker edge appears to align with another blocker edge �����



�


For instance� when both blockers are present simultaneously in Figure ���� the

irradiance curve coincides with curve B to the left of r� and with curve A to the

right� Therefore� the irradiance at r has a discontinuity in the �rst derivative� Only

contact occlusion and edge�edge alignments cause the Jacobian to be unde�ned


other types of events cause higher�order discontinuities in the vector irradiance�

but are �rst�order smooth�

(b)(a) (c)

PB2 B3

B1

Figure ���	 �a� The vertex Jacobian does not exist at the intersection of three edges� A

small change can produce �b� a single apparent vertex� or �c� two apparent vertices�

From equation ������ it would appear that the irradiance Jacobian does not

exist if any one of the vertex Jacobians fails to exist
 this is not always so� A

vertex Jacobian may be unde�ned because the vertex lies at the intersection of

three edges� as shown in Figure ���a� In cases such as this� a minute change in

r can lead to several possible con�gurations with di�erent vertex Jacobians� See

Figures ���b and ���c� However� the unoccluded area of the source still changes

smoothly despite such a di�culty at a single vertex� To ensure that equation ������

is valid wherever  is di�erentiable� we simply restrict the edges that are used in

computing the vertex Jacobians to those that actually bound the clipped source�

Thus� in Figure ���� blocker B� is ignored until it makes its presence known by the

addition of a new edge� as in Figure ���c�

The most basic property of the Jacobian matrix is its connection with direc�

tional derivatives� For any � � S�� the directional derivative of  at r in the

direction � is

D� �r� $ Jr� � �� ������
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Although directional derivatives of  may be approximated to second order with

central di�erences� using the irradiance Jacobian has several advantages� First� all

directional derivatives of  �r� are easily obtained from the irradiance Jacobian at

r� which requires a single global clipping operation� That is� sources need only

be clipped against blockers once per position r when computing the irradiance

Jacobian according to equation ������� In contrast� �nite di�erence approxima�

tions require a minimum of two clipping operations to compute a single directional

derivative� More importantly� directions of maximal change follow immediately

from the Jacobian but require multiple �nite di�erences to approximate�

A �nal property� which we build upon in the next section� is the connection

with the rate of change of surface irradiance� Di�erentiating equation ������ with

respect to position� we have

r� $  T J�n� % nT J� �� ������

which associates the irradiance gradient with the irradiance Jacobian� Note that

J�n� is the curvature tensor of the surface at each point r � M� For planar surfaces

J�n� � �� so equation ������ reduces to

r� $ nT J� �� ������

which is the form we shall use to compute isolux contours on polygonal receivers�

When evaluating equation ������ several optimizations are possible by distributing

the vector multiplication across the terms of equation ������� which changes the

summation of matrices into a summation of row vectors�

��� Applications of the Irradiance Jacobian

Thus far we have derived a closed�form expression for the irradiance Jacobian

and described the geometrical computations required to evaluate it� By means of

equation ������� the irradiance Jacobian can be computed analytically at any point

r within a di�use polyhedral environment illuminated by di�use luminaires� The
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most di�cult aspect of the computation is in determining the visible portions of

the luminaires� although this is also a requirement for computing irradiance� The

steps are summarized as follows�

Matrix IrradianceJacobian� Point r �

Matrix J � �

for each source P with radiant exitance M

beginbP � P depth�clipped against all blockers� as seen from r

for each i	 Ji � vertex Jacobian for the ith vertex of bP
for each i	 Ei � edge matrix for the ith edge of bP
for each i	 Ci � corner matrix using Ei�� and Ei

J � J % M
��
�sum of all Ci Ji�

end

return J

Here the inner loops all refer to the vertices as seen from r
 pairs of vertices

associated with invisible edges are counted as one� Gradients can then be computed

using equation ������ or equation ������� The procedure above is a general�purpose

tool with many applications� several of which are described in the remainder of this

section�

����� Finding Local Extrema

The �rst application we examine is that of locating irradiance extrema on surfaces�

which can be used in computing bounds on the transfer of energy between sur�

faces ����� Given the availability of gradients� the most straightforward approach

to locating a point of maximal irradiance is with an ascent method of the form

ri�� � ri % �i � I� n�r� nT�r� �r�T�ri�� ����
�

where r� is a given starting point� and the factor �i is determined by a line search

that insures progress is made toward the extremum� For example� the line search

may simply halve �i until an increase in irradiance is achieved� The extremum has
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been found when no further progress can be made� Minima are found similarly�

The principle drawbacks of this method are that it �nds only local extrema� and

convergence can be very slow when the irradiance function is �at� In the absence

of a global method for locating all extrema� seed points near each of the relevant

extrema must be supplied�

����� Direct Computation of Isolux Contours

Curves of constant irradiance over surfaces are known as isolux contours ������

Within computer graphics� isolux contours have been used for depicting irradi�

ance distributions ���������� volume rendering ���� simplifying shading computa�

tions ����� and identifying isolux areas� which are regions of approximately constant

illumination ����� In computer vision isolux contours have been used to perform

automatic image segmentation ����� Because of their utility in visualizing the il�

lumination of surfaces� illumination engineers had developed methods for plotting

isolux contours by hand for one or two unoccluded sources long before the advent

of the computer ������
�� In this section we show how isolux contours can be

computed directly using the irradiance Jacobian�

Every isolux contour on a surface M can be represented by a function of a

single variable� r 	 ������M� that satis�es

��r�s�� $ ��r���� ������

for all s � �� To compute such a curve we construct a �rst�order ordinary di�er�

ential equation �ODE� to which it is a solution� and solve the ODE numerically�

The direction of most rapid increase in ��r� at a point r � M is given by the

gradient r��r�� which generally does not lie in the tangent plane of the surface�
The projection of the gradient onto the surface is a tangent vector that is orthogonal

to the isolux curve passing through its origin� See Figure ���a� If the projected

gradient is rotated by �� degrees� we obtain a direction in which the irradiance

remains constant to �rst order� The rotated gradients de�ne a vector �eld whose
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(a) (b)

Figure ���	 �a� Projecting the gradient onto a surface de�nes a �D vector �eld everywhere

orthogonal to the level curves� �b� Rotating the projected gradients by ���� creates a

vector �eld whose �ow lines are isolux contours� Local maxima are then encircled by

clockwise loops�

�ow lines are isolux contours� See Figure ���b� Combining these observations� we

de�ne the isolux di
erential equation by

(r $ P�r�r�T�r�� ������

with the initial condition r��� $ r�� where

P�r� � R�n�r�� �I� n�r� nT�r�� � ������

and R�z� is a rotation by ���� about the vector z� The matrix P�r� is constant
for planar surfaces� The solution of this ODE is an isolux contour with irradiance

c $ ��r���

����� Solving the Isolux Di�erential Equation

Any technique for solving �rst�order ordinary di�erential equations can be applied

to solving the isolux di�erential equation� The overriding consideration in selecting
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an appropriate method is the number of irradiance values and gradients used in

taking a step along the curve� Obtaining this information involves a global clipping

operation� which is generally the most expensive part of the algorithm�

Multistep methods are particularly appropriate for solving the isolux ODE

since they make e�cient use of the recent history of the curve� For example�

Milne�s predictor�corrector method is a multistep method that predicts the point

rk�� � r�sk��� by extrapolating from the three most recent gradients and function

values using a parabola� When the matrix P is �xed� Milne�s predictor is given by

r�k�� � rk�� %
�h

�
P ��gk�� � gk�� % �gk� � ������

where gk denotes the gradient at the point rk� and h is the step size ���� Given the

predicted value� a corrector is then invoked to �nd the nearest point on the curve�

Because the contour is the zero set of the function ��r�� c� the correction can be

performed very e�ciently using Newton�s method� Beginning with the predicted

point r�k� a Newton corrector generates the sequence r
�
k� r

�
k� � � � by

ri��k � rik %
h
c� ��rik�

i r�T�rik�

jjr�T�rik� jj�
� ������

which converges quadratically to a point on the curve� The iteration is repeated

until ���c� ��rik�
��� � �� ������

where � is a preset tolerance� With this corrector� accurate polygonal approxi�

mations can be generated for arbitrarily long isolux contours� This would not be

possible with the traditional Milne corrector� for example� which would eventually

drift away from the curve� With a good predictor� very few correction steps are

required� which saves costly gradient evaluations�

����� Examples of Isolux Contours

The predictor�corrector method described above was used to compute isolux con�

tours for simple test cases with both unoccluded and partially occluded sources�
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Figure ����	 A family of isolux contours for three unoccluded sources�

The step size h and the tolerance for the corrector were user�supplied parameters�

Use of the Newton corrector made the curve follower fairly robust
 even abrupt

turns at or near derivative discontinuities in the irradiance function were automat�

ically compensated for�

To generate a family of curves depicting equal steps in irradiance� similar to

a topographic map� we must �nd starting points for each curve with the desired

irradiance values c� � c� � � � � � ck� The Newton corrector can be used to �nd a

point on the �k%��st curve by �nding a root of the equation ��r�� ck�� beginning

at any point on the kth curve� The curve families in Figures ���� and ���� were

automatically generated in this way� Figure ���� shows a family of isolux contours

resulting from three unoccluded rectangular sources� Three distinct families were

generated� starting at each of the three local maxima� which were found by the

ascent method described in section ������ Figure ���� shows a family of isolux

contours resulting from a rectangular source and a simple blocker� These contours

surround both a peak and a valley�

Because distinct isolux contours cannot cross� any collection of closed contours
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has an obvious partial ordering de�ned by containment� To display �lled contours�

as shown in Figures ����a and ����b� the regions can be painted in back�to�front

order after sorting according to the partial order�

Figure ����	 Isolux contours on a planar receiver due to a rectangular source and simple

blocker above the plane of the receiver�

Because the isolux contours described in the previous section are generated by

direct computation rather than by post�processing an image� they may be used in

the image generation process� For example� isolux contours can be used to drive a

meshing algorithm for global illumination�

The idea is similar to that of discontinuity meshing �������� which can iden�

tify important discontinuities in the radiance function over di�use surfaces� Isolux

contours provide additional information about radiance functions� and can be em�

ployed for mesh generation either in a preprocessing step for modeling direct illu�

mination� or as part of a radiosity post�process to create a high�quality mesh for

rendering a �nal image �����
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Figure ����	 Filled isolux contours corresponding to the previous �gures� Each region

is shaded according to the constant irradiance of its contour�

Figure ����	 Iso�meshes generated from families of isolux contours using constrained

Delaunay triangulation�
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To best exploit the information in the contours� the mesh elements of an iso�

meshmust follow the contours� Constrained Delaunay triangulation may be used to

generate a mesh with this property from a sequence of segments that approximate

isolux contours ��
�� In earlier work� Lischinski et al� ���� used the same technique to

generate meshes that incorporated irradiance discontinuities� In the present work�

the constraints force the edges of the mesh elements to coincide with the isolux

contours rather than crossing them� Another advantage of Delaunay triangulation

is that it creates triangles with good aspect ratios� Figure ���� shows the result

of applying this algorithm to the families of isolux contours shown in Figure �����

Meshes of varying coarseness can be generated by selecting subsets of the points

along the contours�



Chapter �

Irradiance Tensors

In this chapter we generalize the concept of irradiance to higher�order forms and de�

rive an extended version of Lambert�s formula that applies to non�di�use surfaces�

The generalization of irradiance consists of an in�nite sequence of tensors that in�

cludes both the scalar and vector forms of irradiance as special cases� Each tensor

in the sequence� called an irradiance tensor� consists of moments of a radiance

distribution function f�r� ��� A large class of emission and scattering distributions

can be characterized by combinations of these moments� which makes them useful

in the simulation of non�di�use phenomena� Applications include the computation

of irradiance due to directionally�varying area light sources� re�ections from glossy

surfaces� and transmission through glossy surfaces�

The techniques developed in this chapter apply to any emission� re�ection�

or transmission distribution expressed as a polynomial over the unit sphere� As

a concrete example� we derive expressions for a simple but versatile subset of

these polynomial functions� called axial moments� which are closely related to the

Phong re�ection model ������ Using the extended version of Lambert�s formula� we

derive closed�form expressions for moments of all orders in polygonal environments�

Complete algorithms for e�cient evaluation of the new expressions are presented

and demonstrated by simulating Phong�like emission and scattering e�ects�

�
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��� Non�Lambertian Phenomena

Rendering algorithms are frequently quite limited in the surface re�ectance func�

tions and luminaires they can accommodate� particularly when they are based

on purely deterministic methods� To a large extent� this limitation stems from

the di�culty of computing multi�dimensional integrals associated with non�di�use

phenomena� such as re�ections from surfaces with directional scattering� While nu�

merous closed�form expressions exist for computing the radiative exchange among

uniform Lambertian �di�use� surfaces with simple geometries ������������� these

expressions rarely apply in more general settings� Currently� the only approaches

capable of simulating non�di�use phenomena are those based on Monte Carlo ����

��
��
���
��� hierarchical subdivision ����� or numerical quadrature ������������

Few methods exist at present for computing semi�coherent re�ections of a scene

in a nearly�specular or glossy surface� The earliest examples of glossy re�ection in

computer graphics are due to Amanatides ��� and Cook ����� Amanatides used cone

tracing to simulate glossy re�ections for simple scene geometries and re�ectance

functions� Cook introduced a general Monte Carlo method for simulating such ef�

fects that was later extended to path tracing by Kajiya �
�� and applied to realistic

surfaces by Ward ��
��� Wallace et al� ��
�� approximated Phong�like directional

scattering by rendering through a narrow viewing aperture using a z�bu�er� Aup�

perle et al� ���� devised the �rst general deterministic method using three�point

transfers coupled with view�dependent hierarchical subdivision�

This chapter presents the �rst analytic method for computing direct lighting

e�ects that involve both directional emission or scattering and area light sources	

these include illumination from non�di�use luminaires and re�ections in non�di�use

surfaces� The method handles a wide range of emission and scattering distributions

from ideal di�use to sharply directional� which greatly extends the repertoire of

e�ects that can be computed in closed form� As an example� the simulation shown

in Figure ��� depicts a stained glass window design by Elsa Schmid ���
� re�ected in
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Figure ���	 A stained glass window re�ected in a Phong�like glossy surface� The re�ec�

tion was computed analytically at each pixel using a boundary integral for each luminaire�

The expressions were derived using irradiance tensors�

a nearly�specular surface with a Phong�like re�ectance function� Re�ections of this

type are challenging to simulate using previous methods� but are straightforward

using the techniques developed in this chapter�

The fundamental building block of this chapter is the irradiance tensor� a tensor

representation of irradiance whose elements are angular moments� that is� weighted

integrals of radiance with respect to direction ������ Methods based on angular mo�

ments have a long history in the �eld of radiative transfer ��������� but are applied

here in a fundamentally di�erent way� In classical radiative transfer problems only

the low�order moments are relevant since detailed re�ections that occur at surfaces

can generally be neglected ������ For image synthesis� however� where the light

re�ected from surfaces is paramount� high�order moments can be used to capture

the appearance of a non�di�use surface or the distribution of light emitted from a
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reflective
surface

polygonal
luminaires

scattering
distribution

boundary
integral

Figure ���	 Re�ected radiance is determined by the scattering distribution integrated over

each polygonal luminaire� Each surface integral can be replaced by a boundary integral�

directional luminaire�

Angular moments are an extremely general tool for representing radiance distri�

bution functions
 for instance� they apply to all emission and re�ectance functions

that are de�ned in terms of polynomials over the sphere� However� the speci�c al�

gorithms presented in this chapter address only a small class of these polynomials

corresponding to Phong distributions ������ These polynomials have a fundamen�

tal connection with irradiance tensors and admit practical closed�form expressions

in polyhedral environments� The resulting closed�form expressions were used in

computing the re�ection in Figure ���� where the contribution of each polygonal

window element was computed analytically at each point of the re�ecting �oor by

�rst converting it to a boundary integral� See Figure ����

The new expressions are computed in much the same way as Lamabert�s formula

for irradiance ���������� which requires that we �rst compute the visible contours of

each luminaire when occlusions are present� When applicable� the new expressions

o�er a number of advantages over previous methods� including e�cient evaluation�

exact answers �in the absence of roundo� error�� relative ease of implementation�

and symbolic evaluation of related expressions� such as derivatives� Finally� the
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statistical error� or noise� that accompanies Monte Carlo methods is eliminated�

The remainder of the chapter is organized as follows� Section ��� introduces

basic concepts that motivate the de�nition of an irradiance tensor� which is fur�

ther developed in section ���� These tensors are quite general� with applications

in image synthesis well beyond those explored in this thesis� Section ��� describes

an extension of Lambert�s formula� based on irradiance tensors� that makes it ap�

plicable to non�di�use environments� In section ��� we use the tensor version of

Lambert�s formula to derive expressions for axial moments� a convenient form of

moment with immediate applications� In section ��� we focus on polygonal lumi�

naires and derive the closed�form expressions and algorithms that are subsequently

applied to three di�erent non�di�use simulations in section ��
� Finally� section ���

describes two extensions	 non�planar luminaires� and spatially varying luminaires�

��� Preliminaries

This section introduces the physical and mathematical concepts that motivate the

de�nition of irradiance tensors and summarizes some of the tools from di�erential

geometry that are needed to derive expressions for the new tensor quantities� We

begin by describing a collection of tensors with immediate physical interpretations

and then extend this collection to an in�nite family� The members of the family

are of interest because they embody higher�order moments of radiance distribu�

tion functions� which are useful in characterizing the directional variation of such

functions�

����� Three Related Quantities

Most radiometric quantities can be de�ned in terms of weighted integrals of ra�

diance� We shall examine three such quantities that lead naturally to irradiance

tensors� First� themonochromatic radiation energy density ��
� at the point r � IR��
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denoted u�r� and de�ned by

u�r� � �

c

Z
S�
f�r�u� d��u�

�
joules

m�

�
� �����

is the radiant energy per unit volume at r� Here c is the speed of light in the

medium� A similar quantity known as the scalar irradiance ����� p� ��� is given

by c u�r�� which has the units �watts�m�� because of the constant� The vector

irradiance at a point r� which appeared in chapter �� is de�ned by the closely

related vector integral

 �r� �
Z
S�
u f�r�u� d��u�

�
watts

m�

�
� �����

The scalar quantity  �r� � v is the net �ow of radiant energy through a surface at
r with normal v ������ Finally� the radiation pressure tensor ����� at r� denoted by

!�r�� is a symmetric �� � matrix found by integrating the outer product uuT	

!�r� � �

c

Z
S�
uuT f�r�u� d��u�

�
joules

m�

�
� �����

The physical meaning of the bilinear form wT!�r�v is the rate at which photon

momentum in the directionw �ows across a surface at r with normal v� This tensor

is exactly analogous to the stress tensor encountered in the theory of elasticity �����

Thus� each of the above integrals has a di�erent meaning and provides distinct

information about the radiance distribution function at the point r�

Note that in equations ����� and ������ the integral is in e�ect distributed across

the elements of the vector or matrix� In equation ����� each element of the vector is

a weighted integral of f�r� �� with a weighting function that is a �rst�order monomial
on the sphere
 that is� one of the coordinate functions x� y� or z� where

x�u� � e� � u�
y�u� � e� � u�
z�u� � e� � u�
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for all u � S�� and fe�� e�� e�g is the canonical basis for IR�� Alternatively� the

functions x� y� and z can be viewed as the direction cosines of the vector u� In equa�

tion ����� the weighting functions are the second�order monomials� x�� y�� z�� xy� xz�

and yz� Thus� the scalar�valued integrals embodied in equations ����� and �����

respectively correspond to �rst� and second�order angular moments of the radiance

distribution function�

Although the three quantities de�ned above are distinct� they are also interre�

lated� For example� since x� % y� % z� $ �� it follows that

trace !�r� $ u�r� �����

for all r � IR�� which demonstrates a connection between the �nd and �th�order

moments� Relationships of this nature also exist among higher�order analogues

and will be an essential element in their construction�

����� Polynomials over the Sphere

While the integrals de�ning vector irradiance and the radiation presure tensor em�

body �rst� and second�order weighting functions respectively� we now motivate the

extension of this idea to higher order monomials� First� we observe that polynomi�

als over the sphere based on the coordinate functions x� y� and z can approximate

a very large class of functions� in exact analogy with polynomials over the real line�

Secondly� we show that the polynomials are well suited to approximating a class

of functions that arise in simulating non�di�use phenomena�

The general approximation property can be shown very easily using a non�

constructive argument� Observe that any collection of functions over a common

domain de�nes an associated vector consisting of the algebraic closure of the set

under pointwise addition and scalar multiplication� that is

��f��u� � �f�u��

�f % g��u� � f�u� % g�u��
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Figure ���	 The three direction cosines x� y� and z have graphs consisting of two

spherical lobes� one positive and one negative� These functions generate an algebra of

functions over the sphere that is dense in Lp�

where � is a scalar� The resulting collection may be further extended by introducing

a third operation� pointwise multiplication� de�ned by

�f � g��u� � f�u� g�u��

The collection of all functions obtained from the initial set by means of �nite

products and linear combinations forms an algebra� Let A denote the algebra

generated by the real�valued functions x� y� and z de�ned on S�� which are depicted

in Figure ���� The set A� which is algebraically closed under the usual vector space
operations augmented by pointwise multiplication� de�nes the polynomials over the

sphere�

We now show that the elements of this algebra can approximate any Lp�function

on the sphere with p � �
 that is� any function in the space Lp�S�� �� consisting

of all measurable functions f 	 S� � IR with respect to � such that

Z
S�
jf�u�jp d��u� � �� �����

That polynomials over S� can uniformly approximate this large class of functions

follows easily from the Stone�Weierstrass theorem ����� p� �
��� stated below�
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Figure ���	 �a� A cosine lobe de�ned by a 	th�order monomial� and �b� the same lobe

about an arbitrary axis� which represents a 	th�order polynomial over the sphere�

Theorem � �Stone
Weierstrass�� If X is a compact set and N is an algebra

of continuous functions over X that separates the points of X and contains the

constant functions� then N is uniformly dense in the continuous functions over X�

A collection of functions over a set X is said to separate its points if for any

two points x and y in X there exists a function f in the collection such that

f�x� �$ f�y�� To see that the theorem applies to the algebra A of polynomials over

the sphere� we observe that �� the unit sphere is a compact set� �� the algebra

generated by x� y� and z contains the constant functions since x�%y�%z� $ �� and

�� the functions x� y� and z separate the points of S� since distinct points must

di�er in at least one coordinate�

Finally� the approximation property extends to all Lp functions with p � �
because the set C�S�� of continuous functions on S� is dense in Lp�S�� �� with

respect to the L��norm ����� p� 
��� That is� any Lp function on the sphere may

be approximated to within � � � at almost every point by a continuous function�

It follows that A is dense in Lp�S�� ���

Of greater practical signi�cance is the ease with which these polynomials can

approximate certain functions that arise in the simulation of non�di�use emission
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and scattering� As a simple example consider the monomial z�� whose graph con�

sists of two elongated lobes� as shown in Figure ���a� The same shape can be

de�ned along any axis by a �th�order polynomial
 for this reason� the represen�

tation is sometimes referred to as steerable ������ See Figure ���b� Scattering

distributions can be approximated by superposing lobes along di�erent axes and

of di�erent orders� Figure ��� shows a hypothetical BRDF constructed from three

lobes� Directed lobes have other properties that make them a convenient tool for

representing radiance distributions in general� as we show in section ����

Figure ���	 A hypothetical bidirectional re�ectance distribution function de�ned as a

polynomial over the sphere� the polynomial is formed from the superposition of three

directed lobes�

In the remainder of this section we establish several basic facts about these

integrals that will be useful in integrating polynomials over subsets of the sphere� In

particular� we consider the normalization function for monomials over the sphere�

which we de�ne by

	�i� j� k� �
Z
S�
xiyjzk d��u�� �����

This function plays an important role in the development of irradiance tensors� For

example� it is the key to the �odd�even� behavior of polynomials over the sphere


that is� a fundamental di�erence between monomials whose exponents are all even
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and those with at least one odd exponent� We now state the two central theorems

concerning the function 	�i� j� k��

Theorem � Let i� j� and k be non�negative integers� Then 	�i� j� k� $ � if and

only if at least one of i� j� and k is odd�

Proof� See Appendix A���

Where it is nonzero� the normalization function can be succinctly expressed in

two very di�erent forms� The �rst is in terms of the double factorial� de�ned by

n## �

�������
� � � � � � � � �n� �� � n if n is even

� � � � � � � � �n� �� � n if n is odd�

The second representation of 	�i� j� k� involves the multinomial coe�cient�
i

n

j k

�
� n#

i# j# k#
� ���
�

where n $ i % j % k� This coe�cient gives the number of distinct permutations

among n objects of three distinguishable types
 i of the �rst type� j of the second

type� and k of the third type ����� Using these de�nitions� we now state the second

theorem�

Theorem � Let i� j� and k be non�negative even integers� Then

	�i� j� k� $
�i� ��## �j � ��## �k � ��##

�n % ��##
�����

$
�

n% �

��
i�

n�

j � k�

�A
�
i

n

j k

� � �����

where n $ i% j % k and the primes denote division by ��

Proof� See Appendix A��
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����� Elements of Di�erential Geometry

To study higher�order generalizations of irradiance we shall employ some basic

machinery from di�erential geometry� In particular� we shall use the language of

tensors and di�erential forms� This section summarizes the relevant facts that will

be needed in the remainder of the chapter�

Di�erential forms are a formalism for representing integrands of multiple in�

tegrals� The algebraic properties of di�erential forms subsume the classical dif�

ferential operators of divergence� gradient� and curl� and extend immediately to

arbitrary dimensions� To emphasize the special behavior of multi�dimensional in�

tegrands� the classical notation dy dx is replaced with the wedge product dy 	 dx�

which is referred to as a ��form
 higher�order forms are constructed from multi�

ple wedge products� The collection of algebraic rules associated with di�erential

forms is known as the exterior calculus
 it describes the interaction of the wedge

product 	 and the exterior derivative operator d in terms of classical derivatives�
The identities from the exterior calculus that we require are these	

dx 	 dy $ �dy 	 dx ������

d�f d�� $ df 	 d� ������

df $
�f

�x
dx %

�f

�y
dy %

�f

�z
dz� ������

where f is a real�valued function de�ned on IR�� Several intrinsic properties of

di�erential forms are also important� In particular� a p�form � is said to be closed

if d� $ � and exact if there exists a �p����form � such that � $ d�� The principle

motivation behind the development of the exterior calculus was to determine when

di�erential forms are exact� The concept of an exact di�erential form is crucial

to the following development� and will further explain the �odd�even� behavior of

polynomials over the sphere�

Tensors are another important tool in the study of multi�dimensional integra�

tion� and they will play a large role in what follows� The concept of a tensor may



��

be de�ned in a number of ways
 in the present work an nth�order tensor �or n�

tensor� shall mean a multilinear functional de�ned on the n�fold cartesian product

V � � � � � V of a vector space V ��
�� In the following discussion� we shall only

consider the case where V is the Euclidean space IR��

Tensors of any order can be formed using the tensor product operator� denoted

by �� which constructs bilinear mappings on the cartesian product of two vector
spaces� If A and B are both linear functionals on IR�� then A � B is a bilinear

functional on IR� � IR�� or IR�� de�ned by

�A�B��x� y� � A�x� �B�y� ������

for all x� y � IR�� The tensor product operation is associative� so products of the

form A�B�C are unambiguous�

Every linear functionalA 	 IR� � IR is uniquely represented as an inner product

with some vector� which in turn may be speci�ed by its coordinates with respect to

some basis� Thus� the ��tensor A may be identi�ed with its cartesian components�

denoted by Ai for i $ �� �� �� The components of an n�tensor will be denoted

using either n subscripts or a single multi�index consisting of n subscripts� The

tensor product can therefore be written in component form as �A�B�ij � AiBj

for � � i� j � �� where A and B are both ��tensors�

For notational convenience we shall adopt the summation convention� so that

summation is implicit over every index occurring twice in a term� For example�

AijBjk �
�X

j��

AijBjk

is a ��tensor� This convention will not apply to sub�indices� that is� to indices

of other indices� The tensors that we shall derive will depend largely on two

fundamental tensors	 the Kronecker delta and the Levi�Civita symbol �also called

the permutation symbol�� respectively de�ned by

�ij �
����� � if i $ j

� otherwise�




�

�ijk �

�������������
� if �i� j� k� is an even permutation

�� if �i� j� k� is an odd permutation

� if �i� j� k� is not a permutation�

In the derivations that follow we employ a number of useful relationships that exist

among these tensors� The basic identities that we shall require are summarized

below without proof�

�ij�ij $ � ������

�ijk �ljk $ ��il ������

�pjl �kml $ �pk�jm � �pm�jk ������

�ijAiBj $ A �B ����
�

�ijkAjBk $ �A�B�i ������

Here � and � denote the standard dot and cross products� respectively� Finally� we
require the generalized Stokes� theorem� which may be writtenZ

A
d� $

Z
�A
�� ������

where A is a subset of IRp� or more generally� a p�manifold in IRp�k� and � is a

�p� ���form� Here �A denotes the boundary of A� Equation ������ is an extension

of the fundamental theorem of calculus� which subsumes both the classical Stokes�

theorem and Gauss�s theorem �see� for example� Bishop and Goldberg ���� or Spi�

vak ������� The generalized Stokes� theorem is the tool by which we shall reduce

the area integrals corresponding to irradiance tensors into boundary integrals� and

in some instances obtain closed�form expressions�

��� Generalizing Irradiance

The physical quantities de�ned in the previous section can be extended to higher�

order forms using the formalism of tensors� Doing so will provide a means of

characterizing radiance distributions in terms of high�order moments�




�

����� De	nition of Irradiance Tensors

Aside from the constant ��c� which has the units �sec�m�� all of the integrals

described in section ����� are multilinear functionals of the form

Z
S�
u� � � � � u f�r�u� d��u�

�
watts

m�

�
� ������

where � denotes a tensor product
 that is� each of the integrals de�nes a mapping

from IR� � � � � � IR� to IR that is linear in each of the vector arguments inde�

pendently� Viewed in this way� radiation energy density� vector irradiance� and

the radiation pressure tensor are tensors of order �� �� and � respectively� with

equation ������ providing the natural extension to tensors of all higher orders�

When the function f represents radiance� the family of integrals in equation ������

subsumes the notion of vector irradiance� and each member possesses the units of

irradiance �watts�m��� We therefore refer to this family of multilinear functionals as

irradiance tensors� Although high�order irradiance tensors do not have immediate

physical interpretations ����� p� ��� they are nevertheless useful vehicles for inte�

grating polynomial functions over the sphere� such as those representing emission

or scattering distributions�

In this work we shall restrict f�r� �� to be piecewise constant� or more gener�
ally� piecewise polynomial over the sphere� Angular moments of f then reduce

to polynomials integrated over regions of the sphere� To concisely represent these

integrals we introduce a simpli�ed form of irradiance tensor de�ned by

Tn�A� �
Z
A
u� � � � � u� �z �

n factors

d��u�� ������

where A � S� and n � � is an integer� The integrand of such a tensor contains all
monomials of the form xiyjzk where �x� y� z� � S�� and i% j % k $ n
 thus� Tn�A�

consists of nth�order monomials integrated over A�

In what follows� the region A � S� will represent the spherical projection of

a luminaire P � IR�� Using the notation of chapter �� we shall write A $ 
�P �




�

where again� we assume without loss of generality that the origin is the center of

projection� The tensors Tn�A� allow us to perform several useful computations


for example� we may compute angular moments of the illumination due to uniform

Lambertian luminaires� or the irradiance due to directionally varying luminaires�

Irradiance tensors of all orders are de�ned by surface integrals� and in some

instances may be reduced to one�dimensional integrals by means of the generalized

Stokes� theorem� The resulting boundary integrals can be evaluated analytically

for certain patch geometries� such as polygons� The foregoing approach extends

the classical derivation of Lambert�s formula for irradiance ���������� yielding more

complex boundary integrals in the case of higher�order tensors�

����� The Form Di�erential Equation

In this section we investigate some of the properties of the tensor Tn�A� and show

that it may be expressed in terms of a boundary integral and a term involving the

solid angle of A� which is ��A��

One of the fundamental tools of this chapter is a representation of solid angle in

terms of a surface integral� If each ray through the origin meets a surface P � IR�

at most once� then the solid angle subtended by P is

��
�P �� $
����Z
P
d�
���� � ������

where the ��form d� is given by

d� � �x�dy 	 dz� % y�dz 	 dx� % z�dx 	 dy�

�x� % y� % z��
�

�

������

over the domain IR� � f�g� Here x� y� and z denote coordinate charts over the

manifold P � For the following development it is convenient to omit the absolute

value signs in equation ������� thus allowing the solid angle to be signed according

to the orientation of the surface� The negative sign in equation ������ is included

so that solid angle will be positive for surfaces whose orientation is positive or
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0

dω 

θ

dΑ 
r

r 

n(r )

Figure ���	 The geometrical relation between the ��forms d� and dA� interpreting them

as in�nitesimal quantities�

counterclockwise with respect to the origin� Note that the de�nition of the ��form

d� corresponds to the familiar change of variable

d� $
cos �

r�
dA� ������

where d� and dA are interpreted as in�nitesimal solid angle and in�nitesimal area�

respectively� and r and � are as shown in Figure ���� More formally� equation ������

is the pullback of the solid angle ��form to the volume element dA of the surface�

The connection between the measure � and the ��form d� is simply

��A� $
Z
A
d��u� $

Z
A
d�� ������

where A � S� and A is positively oriented� We shall always assume that A is

su�ciently well�behaved that integrals of both forms are de�ned
 that is� A is both

measurable and recti�able ������ Which representation we use will depend on the

context� In general� we adopt the language of di�erential forms d� for computations

that involve the integrand� and the measure�theoretic notation when the emphasis

is on the integral as a whole� either as a function or as a transformation�

Our strategy for obtaining closed�form expressions for each of the irradiance

tensors is to �rst convert the surface integrals into integrals over the boundaries�

The resulting boundary integrals can then be expressed in closed�form for simple

geometries� such as polygons� This approach is analogous to classical derivations




�

of formulas for irradiance ������������� To extend the approach to more general

settings� we seek a ��form �� which is itself an nth�order tensor� such thatZ
�A
� $

Z
A
un d�� ������

where u � r� jj r jj� and un denotes the n�fold tensor product of u ����
 that is

un � u� � � � � u� �z �
n terms

�

Thus� each element of un is a product of n direction cosines	

unI � ui�ui� � � �uin �

The relationship between the di�erential forms associated with the two integrals

in equation ������ is provided by the generalized Stokes� theorem� from which it

follows that

d� $ un d�� ����
�

In terms of individual components� equation ����
� is equivalent to the �n equations

d�i����in $ ui� � � �uind�� ������

where � � ik � � for k $ �� �� � � �n� As we shall see� in some instances no ��form �

satis�es the above equation
 consequently� a slight modi�cation of equation ������

will be required in order to integrate un d� over A� Because the product of the

n scalars on the right of equation ������ commute� the tensor � possesses a large

number of symmetries� Of its �n elements� only�
n % �

�

�
$
�n% ���n% ��

�
������

are unique� Equation ������ gives the number of ways to distribute n indistinguish�

able objects �exponents� among three bins �x� y� and z��

Now we shall consider the question of whether there exists a ��form � that

satis�es equation ������� which is equivalent to determining when the ��form




�

ui� � � �uin d� is exact� We �rst observe that if � is an exact ��form de�ned on

S�� then

Z
S�
� $ ��

This is a direct consequence of Stokes� theorem� for if � is exact� then � $ d� for

some ��form � de�ned on S�� It follows that

Z
S�
� $

Z
�S�

� $
Z
�

� $ ��

since S� has no boundary� An important implication of this fact is that the ��form

d� is not exact� since

Z
S�
d� $ ��� ������

which is the surface area of the unit sphere� Hence� no ��form � can satisfy

equation ������ when n $ �� which implies that the solid angle subtended by A

cannot be expressed as an integral over its outer contour as seen from the origin�

Nevertheless� it is common practice to denote the ��form for solid angle by d��

with the apparent implication that it is the di�erential of some ��form � ������

Because d� is not exact we require a direct means of computing T��A�� which

corresponds to solid angle� since it cannot be reduced to a boundary integral� When

A is a polygon� this is easily accomplished using an elementary result of spherical

trigonometry ����� as shown below�

Theorem � implies that the ��form xiyjzk d� cannot be exact if i� j� and k are

all even� which indicates that the complication noted above for computing solid

angle must also arise with all the other even�order tensors� Fortunately� the general

case is no more di�cult to handle than the �th�order case� To see this� we add a

constant to each monomial that forces equation ������ to hold� which is a necessary

condition for exactness� That is� we introduce constants cijk such thatZ
S�

h
xiyjzk � cijk

i
d� $ � ������




�

for all i� j� and k� Clearly cijk $ 	�i� j� k�� so equation ������ may be replaced by

d�i����in $
h
xiyjzk � 	�i� j� k�

i
d�� ������

where i� j� and k are the number of occurrences of the indices �� �� and � respec�

tively in i�� i�� � � � � in� To show that the new ��form on the right of equation ������

is now exact� by De Rham�s theorem ���� p� �
� it su�ces in this instance to show

that it is closed� To show that the right hand side of equation ������ is closed�

we show that all expressions of the form xiyjzk d� are closed� See Appendix A���

Therefore� we are guaranteed that a ��form � satisfying equation ������ exists in

all cases� To express equation ������ in tensor form� we de�ne

	n
I � 	�
�I � 


�
I � 


�
I �� ������

where I is the multi�index �i�� � � � � in� and 

i
I denotes the number of occurrences of

the index i in I� Equation ������ can now be written as

d� $ �un � 	n� d�� ������

which is the fundamental equation for �� This equation is an example of a form

di
erential equation� since the unknown is the di�erential form � ����� p� ����

Given a ��form � satisfying equation ������� the n�tensor Tn�A� is given by

Tn�A� $ 	n ��A� %
Z
�A
�� ������

Thus� the tensor 	n is a component of the �nal expression for Tn�A�� which makes

explicit the role of solid angle in all even�order tensors� Equation ������ is the

generalization of Lambert�s formula that we develop further and apply in the re�

mainder of this chapter�

To make equation ������ more concrete� the following theorem provides an

expression for 	n in terms of elementary tensors�







Theorem � When n is odd� 	n $ �� When n is even

	n
I $

�

�n % ��#

X
J�S	I


�j�j� � � � �jn��jn� ������

where S�I� is the set of all permutations of the multi�index I $ �i�� � � � � in��

Proof� See Appendix A���

Listed below are the �rst few cases of equation ������� which have been simpli�ed

by combining equivalent terms�

	� $ �

	� $
�ij
�

	� $
�ij�kl % �ik�jl % �il�jk

��

	� $ � �ij�kl�pq % �ij�kp�lq % �ij�kq�pl % �ik�jl�pq % �ik�jp�lq

%�ik�jq�pl % �il�kj�pq % �il�kp�jq % �il�kq�pj % �ip�kl�jq

%�ip�kj�lq % �ip�kq�jl % �iq�kl�pj % �iq�kp�lj % �iq�kj�pl � � ����

While many of the terms of the expansion in equation ������ can be combined�

the number of distinct terms nevertheless grows rapidly� as is already evident for

n $ �� The number of terms remaining after simpli�cation is the number of

distinct groupings of the n indices into pairs� To count them� consider the number

of ways to complete a sequence of n�� pairs� removing the indices one at a time

without replacement
 this number is �n � ��##� Consequently� equation ������ is

useful for symbolic purposes� but quickly becomes impractical for computation as

n increases� On the other hand� as n increases� 	n becomes increasingly sparse�

vanishing completely whenever n is odd� When n is even� only�� � % n��

�

�A $ �n % ���n% ��

�
$ O�n�� ����
�




�

of the �n elements are non�zero� This is the number of ways to distribute the n��

powers of � among x� y� and z� or equivalently� the number of distinct arrangements

of n�� objects and two partitions�

��� Extending Lambert�s Formula

In this section we address the problem of �nding the ��form � that satis�es equa�

tion ������� The derivation will be completely general� applying to irradiance ten�

sors of all orders� We shall show that the higher�order tensors can be conveniently

expressed by means of a recurrence relation of the form

Tn $ Gn�T
n��� %Hn��A�� ������

with T�� � �� and T��A� � ��A�� Thus� each tensor of order � or higher can be

constructed from two components	 a function of the boundary and a function of a

lower�order tensor� We shall start by examining the second�order tensor� as it will

illustrate some of the steps that also apply in the general case�

����� The Radiation Pressure Tensor

We �rst demonstrate the approach by deriving an expression for the second�order

tensor T��A�� which is proportional to the radiation pressure tensor de�ned on

page ��� We then derive a closed�form expression for this tensor when A is a

spherical polygon�

First� let A � S� be an arbitrary region� It follows from equation ������ and

theorem � that the ��form � corresponding to T��A� is a �� � matrix such that

d� $ �uuT � �

�I� d�� ������

This is the form di�erential equation associated with the radiation pressure tensor�

Letting r denote an arbitrary point on the surface P � IR�� we may rewrite ��form




�

d�� de�ned in equation ������� as

d� � ��qlm rq drl 	 drm
� jj r jj� � ������

where jj � jj is the Euclidean norm� Henceforth� we denote the scalar jj r jj by r�

From equations ������ and ������ it follows that d� may be written

d�ij $ Qijlm drl 	 drm� ������

where we have introduced the ��tensor Qijlm de�ned by

Qijlm �
�
�ij r

� � �rirj
�
�qlmrq

�r�
� ������

For each i and j� the ��form �ij can be written as a linear combination of basic

��forms� which implies that there exists a ��tensor A such that

�ij $ Aijl drl� ������

Di�erentiating both sides of equation ������ and simplifying� we have

d�ij $ Aijl�m drm 	 drl� ������

where the index following the comma indicates a partial derivative� Therefore� the

problem of �nding � reduces to �nding a ��tensor Aijl that satis�es

Aijl�m drm 	 drl $ Qijlm drl 	 drm ������

for all i and j in f�� �� �g� Since ri 	 rj $ �rj 	 ri� equation ������ is equivalent to

�kmlAijl�m $ �klmQijlm� ������

for all i� j� and k in f�� �� �g� Note that the transposition of drl and drm is accounted
for by transposing the indices of one of the � factors� Substituting equation ������

into the above equation and using identity ������� equation ������ becomes

�kmlAijl�m $

�
�ij r

� � �rirj
�
rk

�r�
����
�
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n

A

∂A

Figure ��
	 For any region A � S�� the unit vector n is normal to the boundary �A�

directed outward� and tangent to the sphere�

for all i� j� and k in f�� �� �g� This is the fundamental equation associated with the
tensor T�
 given any ��tensor A satisfying equation ����
�� we can then express the

tensor T��A� in terms of a boundary integral and a term involving surface area�

In particular� it follows from equation ������ that

T�
ij�A� $

�

�
�ij ��A� %

Z
�A
Aijl drl� ������

The following theorem provides a formula for T��A�� in which the ��tensor A

appears as an expression involving the outward normal to the boundary curve �A�

as shown in Figure ��
� We then �nd a closed�form expression for the boundary

integral appearing on the right of equation ������ when A is a spherical polygon�

Theorem � For any A � S� the ��tensor T��A� is given by

T��A� $ I
��A�

�
� �

�

Z
�A
unT ds� ������

where ds denotes integration with respect to arclength and n is the outward normal

to the curve �A�

Proof� We need only show that if �unT ds $ Aijl drl� then Aijl satis�es equa�

tion ����
�� We proceed by expressing the integral in equation ������ in terms of
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r

unit sphere

n

u
.

u

boundary curve

Figure ���	 The outward normal to the boundary curve is obtained from u and its

derivative with respect to arclength� denoted by 	u�

the position vector r and its derivative� From Figure ��� we see that n $ u � (u�

where (u denotes the derivative with respect to arclength du�ds� Therefore�

n ds $ u� du

$
r

r
� �I� uuT�

r
dr

$
r� dr

r�
� ������

It follows that we may replace �unT ds with the expression Aijl drl where

Aijl � �
�jpl rp ri
�r�

� ������

To show that the above expression satis�es equation ����
�� we compute its partial

derivative and multiply by �kml� First� note that

�

� rm

�
�

jj r jjk
�
$ �k rm

jj r jjk�� � ������

for any n � �� Thus� the partial of Aijl with respect to rm is

Aijl�m $ ��pjl
�
ri rp rm
r�

� �im rp % �pm ri
�r�

�
� ������

Multiplying both sides of equation ������ by �r��kml� identity ������ yields

�r��kmlAijl�m $
�
�pm�jk � �pk�jm

� �
�rirprm � �imrpr

� � �pmrir
�
�
�



��

Expanding and simplifying using identities ������ and ����
�� we have

�r��kmlAijl�m $ r�
�
��jkri � �jkri � ��jkri

�
�
�
�rirjrk � �ijrkr

� � �jkrir
�
�

$
�
�ijr

� � �rirj
�
rk�

Dividing by �r� yields equation ����
�� which proves the theorem� ��

Corollary � Let A � S� be a spherical polygon with vertices fu��u�� � � � �ukg�
Then the second�order irradiance tensor T��A� is given by

T��A� $ I
��A�

�
� �

�

kX
i��

sin
�i

�
bi n

T

i � ������

where �i is the angle between ui and ui��� and

ni � ui � ui��
jjui � ui�� jj � ������

bi � ui % ui��
jjui % ui�� jj � ������

are the unit normals and unit bisectors� respectively�

Proof� Let �i be the ith edge of A� That is� �i is the great arc connecting vertices

ui and ui��� We compute the boundary integral along �i using two facts	 �� the

normal n is constant along each edge� and �� the integral of u along the arc results

in a vector that bisects the angle� See Figure ���� Thus�

Z
�i
unT ds $

�Z
�i
u ds

�
nT

i

$

�Z 
i��

�
i��
cos � d�

�
bin

T

i

$ � sin
�i

�
bi n

T

i � ����
�

Substituting the expression above into equation ������ gives the result� ��
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Figure ���	 The integral of u over a great arc is a vector proportional to the bisector of

the arc� This follows from symmetry�

Corollary � extends Lambert�s formula to the second�order form� In itself�

this generalization is of little utility other than illustrating some of the machinery

needed for the general form� which is the topic of the next section�

����� A General Recurrence Relation

In this section we show that equation ������ can be extended to all higher orders

by means of a recurrence relation expressing each irradiance tensor in terms of

lower�order tensors�

We introduce some special notation before giving the general theorem for ir�

radiance tensors� If I is the multi�index �i�� i�� � � � � in�� we de�ne Ik to be the kth

index of I� and for any integer � � k � n we de�ne I�k to be the �n� ���element
multi�index obtained by deleting the kth index of I� That is�

I�k � �i�� i�� � � � � ik��� ik��� � � � � in�� ������

Using the new notation� we now state and prove the central theorem of the chapter�



��

Theorem �� Let n � � be an integer� and let A � S� be a measurable set� Then

the tensor Tn�A� satis�es the recurrence relation

Tn
Ij�A� $

�

n % �

�
n��X
k��

�j IkT
n��
I�k �A� �

Z
�A
un��I nj ds

�
� ������

with T��A� � ��A� and T���A� � �� where I is an �n � ���index� ds denotes

integration with respect to arclength� and n is the outward normal to the curve �A�

Proof� The strategy will be to transform the boundary integral in equation ������

into a sum of irradiance tensors� obtaining the other two terms in the recurrence

relation� The proof will proceed in four steps� Step one is to express the boundary

integral in terms of r and dr� which will make it easy to manipulate� Step two

is to convert this boundary integral into a surface integral by means of Stokes�

theorem� Step three� which is the most laborious� is to express the surface integral

in terms of solid angle� The fourth and �nal step is to show that the resulting

surface integral is equivalent to the remaining terms in equation ������� For the

purpose of the derivation� we shall let P denote any polygon whose projection is

the spherical polygon A� That is� A $ 
�P ��

Step �� �Rewrite the boundary integral�

We begin by expressing n ds in terms of the position vector r and its derivative�

Note that n is a function of u since it is an element of the tangent space of S� at

u� From equation ������� we have n ds $ r� dr � r�� Therefore� we may write

�

n % �

Z
�A
un��
I

nj ds $
�

n% �

Z
�P

�
rn��
I

rn��

� �
�jpl rp drl

r�

�

$
Z
�P
An��

Ijl
drl� ������

where we have introduced the �n% ���order tensor An��� which is de�ned by

An��
Ijl

� � �jpl rp r
n��
I

�n % �� rn��
� ������
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Step �� �Convert the boundary integral to a surface integral�

This step follows immediately from Stokes� theorem� and the fact that

d �fi�r� dri� $ fi�m�r� drm 	 dri� ������

which is a consequence of equations ������ and ������� Applying Stokes� theorem

to equation ������� followed by equation ������� we haveZ
�P
An��

Ijl
drl $

Z
P
d
�
An��

Ijl
drl

�
$

Z
P
An��

Ijl�m
drm 	 drl� ������

Computing the partial derivative of An��
Ijl with respect to rm� yields

An��
Ijl�m

$ �pjl

��rm rp rn��I

rn��
� �pm r

n��
I

% rp r
n��
I�m

�n % �� rn��

�A � ������

By substituting equation ������ into equation ������ we obtain a surface integral�

although it is not yet in the desired form� This is remedied in the next step�

Step �� �Express the surface integral in terms of solid angle�

Rewriting the surface integral in terms solid angle will be done in several steps�

We �rst obtain a factor of �kst by exploiting the anti�commutativity of the wedge

product and applying identity ������
 in doing so we introduce additional dummy

indices k� s� and t� Thus�Z
P
An��

Ijl�m
drm 	 drl $

Z
P
An��

Ijl�m

�
drm 	 drl � drl 	 drm

�

�

$
Z
P
An��

Ijl�m

�
�tl �ms � �tm �sl

�

�
drs 	 drt

$
Z
P

h
�kmlA

n��
Ijl�m

i ��kst drs 	 drt
�

�
� ������

Note that the presence of �kst makes the �nal factor on the right very similar to

d�
 it di�ers only by a factor of rk�r
�� To complete it� we obtain the missing factor

after expanding the other bracketed expression� Multiplying equation ������ by

�kml and simplifying� we have
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�kmlA
n��
Ijl�m $

�
�pm �jk � �pk �jm

� 	�rm rp rn��I

rn��
� �pm r

n��
I

% rp r
n��
I�m

�n% �� rn��

��

$

	� rk r
n��
I�j

�n% �� rn��
� rj rk r

n��
I

rn��

�� % �jk

	�rm rn��I�m
� �n� �� rn��

I

�n% �� rn��

�� �
The above expression simpli�es further since the �nal term vanishes
 this follows

from the observation that

rm r
n��
I�m

$ rm

n��X
k��

�m Ik r
n��
I�k

$
n��X
k��

rIk r
n��
I�k

$ �n� �� rn��
I

� ������

Incorporating this simpli�cation� equation ������ may now be written as

Z
P
An��

Ijl�m
drm 	 drl $

Z
P

	� rk r
n��
I�j

�n % �� rn��
� rj rk r

n��
I

rn��

�� ��kst drs 	 drt
�

�

$
Z
P

	� rn��
I�j

�n % �� rn��
� rj r

n��
I

rn

�� d�� ����
�

where the factor of rk�r
� has been used to complete the solid angle ��form d�� The

result is an integral over solid angle� as desired�

Step �� �Convert to a sum of irradiance tensors�

It is now straightforward to express equation ����
� in terms of irradiance ten�

sors� Breaking equation ����
� into two terms and expanding rn��
I�j
� as we did in

equation ������� we have

Z
�P
An��

Ijl
drl $

�

n% �

Z
P

	�n��X
k��

�j Ik r
n��
I�k

rn��

�� d� �
Z
P

rj r
n��
I

rn
d�� ������

Finally� using equation ������ to replace the expression of the left� and identifying

the two integrals on the right of equation ������ as irradiance tensors of orders n

and n� � respectively� we have
�

n % �

Z
�A
un��
I

nj ds $
�

n % �

n��X
k��

�j Ik T
n��
I�k
�A� � Tn

Ij�A� ������

which proves the theorem� ��



�


From theorem �� it can be seen that each tensor of the form shown in equa�

tion ������ can be reduced to a boundary integral and a term constructed from the

tensor of two orders lower
 the latter being added along generalized �rows� and

�columns� of Tn� Note that the recursive formulation subsumes the expression for

	n given in theorem ��

Another consequence of the theorem is that Tn�A� can be computed analyt�

ically whenever the corresponding boundary integrals and base case can be� In

particular� when A is the spherical projection of a k�sided polygon and n $ ��

equation ������ yields

T�
j�A� $ ��

�

Z
�A
nj ds $ ��

�

kX
i��

�i n
i
j� ���
��

where �i is the angle subtended by the ith edge of the polygon� and ni is its

outward normal� This is the vector form of Lambert�s well�known formula�

Theorem �� de�nes a family of closed�form expressions that provides a natural

extension of Lambert�s formula� Although equation ������ is impractical com�

putationally for moments of order three and higher� it succinctly expresses the

relationship among all the tensors� For instance� it is apparent that all even�order

tensors incorporate solid angle T��A�� while the odd�order tensors do not� We now

derive several useful formulas from this equation and apply them to problems of

image synthesis�



��

��� Angular Moments

With equation ������ as a starting point� we may obtain expressions for individual

moments� or sums of moments� without explicitly constructing the tensors� This

is of great practical importance since the size of Tn�A� grows exponentially with

n� yet only O�n�� of its elements are distinct� In particular� we shall �nd that the

polynomials corresponding to the steerable lobes described in section ����� can be

integrated over polygonal domains with the aid of irradiance tensors� These lobes

de�ne a special class of weighting functions over the sphere that are fundamentally

related to irradiance tensors� and lead to a number of useful formulas by means of

equation �������

����� Axial Moments

We begin by considering the special case of moments about an axis� which de�nes

a simple class of polynomials over the sphere� Given an arbitrary subset A � S�

and a unit vector w� we de�ne the nth axial moment of A about w by

��n�A�w� �
Z
A
�w � u�n d��u�� ���
��

More precisely� equation ���
�� is a moment of the characteristic function of A
 that

is� the function de�ned on S� that is one on A and zero elsewhere� As a cosine

to a power� the polynomial weighting function within ��n is essentially a Phong

distribution centered around the direction w� as shown in Figure ����a� These

functions are steerable in the sense that they to be re�oriented without raising their

order ������ The ease of controlling the shape and direction of the lobe makes this

polynomial function useful in approximating re�ectance functions� as Ward did

with Gaussians ��
��� or an exact representation of simple Phong�like functions�

To obtain a closed�form expression for ��n� we begin by expressing the integrand of

equation ���
�� as a composition of tensors	

�w � u�n $ �u� � � � � u�I �w� � � � �w�I� ���
��
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Figure ����	 Cross�sections of the weighting functions �w�u�n and �w�u�n�v�u� where v

is the vertical axis� moment orders are �� �� �
� and �

� starting from the outer curves�

The summation convention applies to all repeated pairs of indices� which includes

all sub�indices of I in equation ���
��� It follows that

��n�A�w� $ Tn
I �A��w� � � � �w�I� ���
��

which associates the nth axial moment with the nth�order tensor� Using equa�

tion ������ to expand equation ���
��� and simplifying by means of equation ����
��

we obtain a recurrence relation for the axial moment ��n�A�w�	

�n% �� ��n $ �n� �� �w �w� ��n�� �
Z
�A
�w � u�n�� w � n ds� ���
��

where the function arguments have been omitted for brevity� Equation ���
�� is a

recurrence relation for ��n with base cases �����A� $ � and �� ��A� $ ��A�� When

n � � the recurrence relation reduces to a single boundary integral involving a

polynomial in w � u� Since w is a unit vector� we have

�n% �� ��n $ �� q �
Z
�A

h
�w � u�n�� % �w � u�n�� % � � �

% �w � u�q��
i
w � n ds� ���
��

where q $ � if n is even� and q $ �� if n is odd� This expression is useful as a
component of more general expressions� such as double�axis moments�
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����� Double�Axis Moments

An important generalization of equation ���
�� is to allow for moments with re�

spect to multiple axes simultaneously
 this will prove useful for handling radiant

exchanges involving pairs of surfaces� We de�ne the double�axis moment of A with

respect to w and v by

���n�m�A�w�v� �
Z
A
�w � u�n �v � u�m d��u�� ���
��

A recurrence relation for ���n�m can also be obtained from equation ������ by ex�

pressing the integrand as a tensor composition with n copies of w and m copies of

the vector v� We shall only consider the case where m $ �� which corresponds to

Tn���A��w� � � � �w� v� and yields the formula

�n % �� ���n���A�w�v� $ n �w � v� ��n���A�w� �
Z
�A
�w � u�n v � n ds� ���

�

Figure ����a shows how an additional axis can change the shape of the weighting

function� Note that when v $ w� equation ���

� reduces to the �n%���order axial

moment given by equation ���
��� Recurrence relations for ���n�m with m � � can be

obtained in a similar manner� although the resulting boundary integrals are more

di�cult to evaluate�

Evaluating equations ���
�� and ���

� in closed form is the topic of the next

section� In section ��
 we show how these moments can be applied to the simulation

of non�di�use phenomena�

��� Exact Evaluation of Moments

Equations ������ and ���
�� reduce tensors and moments to one�dimensional in�

tegrals and �in the case of even orders� solid angle� This section describes how

both of these components can be evaluated in closed form� Thus far no restrictions

have been placed on the region A � S�
 however� we shall now assume that A is

the spherical projection of a polygon P � IR�� which may be non�convex� The
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Figure ����	 �a� The solid angle of a spherical triangle is easily obtained from the internal

angles� �b� Non�convex spherical polygons can be handled by spoking into triangles from

an arbitrary point Q and summing the signed areas�

resulting projection is a geodesic or spherical polygon� whose edges are great arcs


that is� segments of great circles�

When P is a polygon� the computation of solid angles and boundary integrals

are both greatly simpli�ed� First� and most importantly� the outward normal n is

constant along each edge of a spherical polygon which allows the factors ofw�n and
v � n to be moved outside the integrals in equations ���
�� and ���

� respectively�
A second simpli�cation emerges in the parametrization of the boundary integrals�

as we shall see below�

��
�� Solid Angle

The solid angle subtended by A is given by a simple surface integral� Because

the corresponding di�erential ��form is not exact� however� it cannot be simpli�ed

further to a boundary integral ����� p� ����� Fortunately� the solid angle subtended

by a polygon can be computed directly in another way� If P is a triangle in IR�

its projection 
�P � is a spherical triangle �ABC� Girard�s formula for spherical



��

triangles ���� p� �
�� then states that

���ABC� $ � % � % � � �� ���
��

where �� �� and � are the three internal angles� as shown in Figure ����a� The

internal angles are the dihedral angles between the planes containing the edges�

For instance� the angle � in Figure ����a is given by

� $ cos��
�B � A� � �A� C�

jjB � A jj jjA� C jj � ���
��

Equation ���
�� generalizes immediately to arbitrary convex polygons ���� p� �
��


however� non�convex polygons require a slightly di�erent approach� The solid an�

gle subtended by a non�convex polygon can be computed by covering its spherical

projection with n triangles� one per edge� all sharing an arbitrary vertex Q � S��

See Figure ����b� The solid angle is then the sum of the triangle areas signed ac�

cording to orientation� In the �gure� �QAB� �QCD� and�QDE are all positive�

while�QBC is negative� according to the clock�sense of the vertices� This method

avoids the complication of decomposing 
�P � into triangles�

��
�� Boundary Integrals

The boundary integrals in equations ���
�� and ���

� can be approximated by nu�

merical quadrature� or evaluated analytically in terms of O�n� elementary functions

per edge� We shall only describe analytic evaluation and a related approximation�

both based upon a sum of integrals of the form

F �x� n� �
Z x

�
cosn � d�� ������

Integrals of this form may be evaluated exactly using a recurrence relation given

below� To express the integral in equation ���
�� in terms of F �x� n� when A is

a spherical polygon� we proceed by parametrizing the great arc � de�ned by each

edge as

u��� $ s cos � % t sin ��
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Figure ����	 The vectors used to parametrize the arc de�ned by a polygon edge�

where s and t are orthonormal vectors in the plane containing the edge and the

origin� with s directed toward the �rst vertex� See Figure �����

To simplify the line integral over the great arc � � S�� let � be the angle

subtended by the arc� which is also the length of �� and let

a � w � s
b � w � t
c �

p
a� % b��

From the parametrization given above� it follows that

Z
�
�w � u�n ds $

Z 


�
�a cos � % b sin ��n d�

$ cn
Z 


�
cosn�� � �� d��

$ cn �F ��� �� n�� F ���� n�� � ������

where � is the angle satisfying cos� $ a�c and sin� $ b�c� The function F �x� n�

may then be evaluated in b�n % ����c steps by means of the recurrence relation

F �x� n� $
�

n

h
cosn�� x sinx% �n� ��F �x� n� ��

i
� ������

where F �x� �� $ sinx and F �x� �� $ x� Recurrence relation ������ follows easily

from equation ������ after integrating by parts� Finally� the complete integral in

equation ���
�� is a weighted sum of the integrals shown in equation ������ with a
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sequence of di�erent exponents� which are all even or all odd� By computing this

sequence of integrals incrementally� the complete sum can be expressed in terms

of O�n� elementary functions� as demonstrated in the following section�

��
�� Algorithms for E�cient Evaluation

We now show that nth�order axial moments of a k�sided polygon may be computed

exactly �in the absence of roundo� error� in O�nk� time� and provide the complete

algorithm in pseudo�code� The algorithm evaluates equation ���
�� in O�n� time

for each of the k edges� using recurrence relation ������� The steps are conve�

niently broken into three procedures that build upon one another	 CosSumIntegral�

LineIntegral� and BoundaryIntegral � The key to e�cient evaluation is the proce�

dure CosSumIntegral� which computes the sum

ckF �x� k� % ck��F �x� k % �� % � � �% cnF �x� n�� ������

where k $ m if m % n is even� and k $ m % � otherwise� for a given integer

m � �� The reason for the parameter m will become apparent later
 it is included

so that the procedure CosSumIntegral can accommodate both single� and double�

axis moments�

Because recurrence relation ������ generates integrals of cosine with increasing

powers� all integrals in expression ������ may be generated as easily as the last term

cnF �x� n�� This strategy is embodied in the procedure CosSumIntegral� which is

shown below�
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real CosSumIntegral� real x� c
 integer m�n �

integer i� if even�n� then � else �
 Loop counter�

real F � if even�n� then x else sinx
 Cosine integrals�

real S � �
 Accumulates the �nal sum�

while i � n do

if i � m then S � S % ci � F 

F � � cosi�� x sinx % �i% ��F � � �i % ��


i� i% �


endwhile

return S


end

The next procedure� LineIntegral� reduces the line integral corresponding to a

polygon edge into a sum of cosine integrals
 the steps correspond to equation �������

summed over a sequence of exponents from m to n�

real LineIntegral� vector A�B�w
 integer m�n �

if �n � �� or �w�A and w�B� then return �


vector s� Normalize �A�


vector t� Normalize ��I� ssT�B�
 Component orthogonal to A�

real a� w � s

real b� w � t

real c� p

a� % b�


real �� angle between A and B


real �� sign� b � � cos���a�c�

return CosSumIntegral��� �� c�m� n�� CosSumIntegral���� c�m� n�


end

The next procedure� BoundaryIntegral� computes the complete boundary integral

for a given k�sided polygon P by forming a weighted sum of k line integrals� The

weight associated with each edge is the cosine of the angle between its outward

normal and the second vector v� which may coincide with w�
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real BoundaryIntegral� polygon P 
 vector w� v
 integer m�n �

real b� �
 Accumulates the contribution from each edge�

for each edge AB in P do

vector n� Normalize �A�B�


b� b% �n � v� � LineIntegral�A�B�w� m� n�


endfor

return b


end

With these three basic procedures we may now de�ne the procedure AxialMoment�

which computes the nth axial moment of a polygon P with respect to the axis w�

Even�order moments also require the computation of a �signed� solid angle� which

is handled by this procedure� Equation ���
�� then corresponds to the simple

procedure AxialMoment which follows�

real AxialMoment� polygon P 
 vector w
 integer n �

real a� �BoundaryIntegral�P�w�w� �� n� ��

if even�n� then a� a% SolidAngle�P �


return a��n% ��


end

The function SolidAngle returns the solid angle subtended by the polygon P using

the method described in section ������ Because the sign of the boundary integral

depends on the orientation of the polygon� the solid angle must be similarly signed�

Thus� SolidAngle is positive if the vertices of P are counter�clockwise� as seen from

the origin� and negative otherwise�

Finally� the procedure DoubleAxisMoment computes the nth�order moment of

a polygon P with respect to the w axis and the �st�order moment with respect to

the v axis� Equation ���

� then corresponds to the procedure DoubleAxisMoment�

which is given next�



�


real DoubleAxisMoment� polygon P 
 vector w�v
 integer n �

if n $ � then return AxialMoment�P�v� n�


real a� AxialMoment�P�w� n� ��

real b� BoundaryIntegral�P�w�v� n� n�


return �n � a �w � v� b� � �n% ��


end

It is easy to see that both AxialMoment and DoubleAxisMoment require O�nk�

time� assuming that trigonometric and other elementary functions are evaluated

in constant time� Note that the redundancy in calling both AxialMoment and

BoundaryIntegral can easily be removed
 however� this does not a�ect the order

of the algorithm�

��
�� Normalization

In applying the above methods� it is frequently useful to normalize the resulting

distributions while ignoring negative lobes� We now show how this can be done for

distributions de�ned in terms of double�axis moments�

The two planes orthogonal to the axes of a double�axis moment partition the

sphere into four spherical lunes �also known as spherical digons�
 let L� and L�

be the two lunes in the positive half�space de�ned by v� as shown in Figure �����

To normalize the weighting function associated with a double�axis moment� for

example� we must compute the integral

N�w�v� n� �
Z
L�
�w � u�n �v � u� d��u�

$ ���n���L��w�v�� ������

where v is the surface normal
 thus� the integrand of equation ������ is positive

for all exponents n on the lune L�� All luminaires must be clipped by the planes

de�ning this lune when computing the moments�
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Integral ������ can be evaluated analytically using equation ���

�� which results

in two boundary integrals corresponding to the arcs Cw and Cv in Figure ����� The

special nature of the boundaries greatly simpli�es the computation� In particular�

we have w � u $ � and n $ w on the curve Cw� while v � n $ � on the curve Cv�

Substituting equation ���
�� into equation ���

� with �A $ Cv�Cw� and applying

the aforementioned simpli�cations� we have

�n% �� N�w�v� n� $
Z
Cv
�w � u�n ds

% �w � v�
�
�� q�L��w� %

Z
Cw
jqj ds

�

% �w � v��
Z
Cv

h
�w � u�n�� % � � �% �w � u�q��

i
ds� ������

where q $ � if n� � is even� and q $ �� if n� � is odd�
To apply the procedure CosSumIntegral to the computation of the integrals

above� we split the lune L� into two identical spherical triangles� Letting � denote

one of the halves� by symmetry it follows that

N�w�v� n� $ � ���n�����w�v��

The computation within the loop of procedure CosSumIntegral is greatly simpli�ed

by the fact that x $ ���� which eliminates the trigonometric terms� Consequently�

the terms of the sum ������ can be generated using the recurrence formula

ti�� $ c�
�
i% �

i% �

�
ti�

starting with t� $ ��� if n is even� and with t� $ c if n is odd� where

c $
q
�� �w � v���

To compute �� ����w� $ ���� we note that the area of the lune L� is twice its

internal angle ��� and cos �� $ w � v� Thus�

���� $ �� $ � � cos��w � v�
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Figure ����	 Normalizing the weighting function of a double�axis moment reduces to

computing a boundary integral along the two half circles Cv and Cw� This boundary

de�nes the spherical lune L� on which the moment is positive for all n�

Combining these facts and the minor di�erences due to parity� we obtain a proce�

dure for evaluating integral ������ given arbitrary unit vectors w and v and any

integer n � �� The optimized algorithm� which requires O�n� time� is shown below�

real N� vector w�v
 integer n �

real S � �
 Accumulates boundary integral along Cv�

real d� w � v

real c�p

�� d�


real t� if even�n� then ��� else c


real A� if even�n� then ��� else � � cos���d�

integer i� if even�n� then � else �


while i � n� � do
S � S % t


t� t � c� � �i % �� � �i% ��

i� i% �


endwhile

return � � �t % d � A % d� � S� � �n% ��

end

The three terms t� d �A� and d� � S in the �nal expression of the above procedure
correspond to the �rst� second� and third terms of equation ������ respectively�
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��
�� Optimizations

We conclude this section on exact evaluation by describing some simple optimiza�

tions to the procedures for computing moments� and by showing how the exact

formulas can lead to e�cient approximations with error bounds�

For clarity� the pseudo�code in the previous section does not depict a number

of simple optimizations� For instance� the powers in procedure CosSumIntegral

may be computed incrementally by repeated multiplication� and no trigonometric

functions need be evaluated in the inner loop� Also� in computing double�axis

moments� a great deal of redundant computation may be avoided by allowing

procedure CosSumIntegral to return one additional term in the series� as well as by

computing both endpoints simultaneously �
�� These optimizations do not change

the time complexity of the algorithms� but can signi�cantly reduce the constant�

While there are generally bene�ts to obtaining closed�form expressions� they

are not always practical computationally� An important means of speeding the

computation is to settle for an approximation� To arrive at one such approximation�

note that the terms in equation ���
�� decrease in magnitude monotonically since

jFk��j � jFkj for all k� and � � c � �� When the terms approach zero rapidly we

may therefore obtain an accurate approximation with little work� Moreover� by

bounding the tail of the series it is possible to guarantee a given tolerance� For

example� to compute a double�axis moment to a relative accuracy of �� the loop in

CosSumIntegral may be terminated immediately upon updating S if the condition����� �v � n� cn F�u � v��u � n�

����� %
����� ck F�� c�

����� � � jSj ������

is met� In this case the tail of the series and the �nal integral in equation ���

�

may be dropped� Early termination of the loop is most useful with high orders�

Because the test is costly� it should not be performed at every iteration of the loop�
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Figure ����	 �a� Computing the irradiance at the point r due to a directionally�varying

area light source P is equivalent to �b� computing a double�axis moment of a uniform

Lambertian source of the same shape�

��	 Applications to Image Synthesis

For ideal di�use surfaces irradiance is su�cient to compute re�ected radiance� The

situation is dramatically di�erent for non�di�use surfaces� however� In the extreme

case of ideal specular surfaces� all features of the incident illumination appear

again in the re�ection� For surfaces that are neither ideal di�use nor ideal specu�

lar� high�order moments can be used to quantify additional features of the incident

illumination� much as a power series expansion� For polygonal environments with

emission and re�ection distributions de�ned in terms of simple polynomials� the

procedures given in the previous section may be applied to the simulation of direc�

tional luminaires� glossy re�ections� and glossy transmissions� These applications

are described in the following sections�

����� Directional Luminaires

Methods for simulating the illumination due to di�use area sources ����� and di�

rectional point sources ����� are well known
 however� directional area sources are

problematic for deterministic methods� In this section we shall see how a class of
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Figure ����	 Examples of directional luminaires� At each point the irradiance is com�

puted analytically from the area light source� The moment orders are 
� �
� and �


respectively�

directional luminaires can be handled using double�axis moments�

Let P be a polygonal luminaire whose emission distribution is spatially uniform

but varies directionally according to a Phong distribution
 that is� as a cosine to a

power ������ For instance� the direction of maximum radiance may be normal to

the plane of the luminaire and fall o� rapidly in other directions� as shown by the

distribution in Figure ����a� The irradiance at the point r is then given by

Z
�	P �


ju �wjn cos � d��u�� ����
�

where P � is the luminaire translated by �r� and � is the angle of incidence of u


that is� cos � $ v �u� where v is the surface normal� Observe that this computation
is equivalent to a double�axis moment of a Lambertian source P � where the nth

moment is taken with respect to �w and the factor of cos � is accounted for by the

second axis v� See Figure ����b� Therefore� procedure DoubleAxisMoment can be

used to compute the irradiance due to directional luminaires of this form exactly�

Figure ���� shows a simple scene illuminated by an area source with three dif�

ferent directional distributions� Note that the areas directly beneath the luminaire

get brighter with higher orders� increasing the contrast with the surrounding ar�

eas� which get darker� Polygonal occlusions are handled by clipping the luminaire
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Figure ����	 A simple BRDF de�ned by an axial moment around the mirror re�ection w

of u�� By reciprocity� the radiance in the direction �u� due to P reduces to a double�axis

moment of P with respect to w and v�

against all blockers and computing the contribution from each remaining portion�

precisely as Nishita and Nakamae ����� handled Lambertian sources�

����� Glossy Re
ection

A similar strategy can be used for computing glossy re�ections of polygonal Lam�

bertian luminaires� Let r be a point on a re�ective surface� Then the re�ected

radiance at r in the direction u due to luminaire P is given by

f�r�u� $
Z
�	P 



�u��u� f�r�u�� cos � d��u��� ������

where 
 is the BRDF and � is the angle of incidence of u�� Now consider a simple

BRDF de�ned in terms a Phong exponent� Let


�u��u� � c �uT �I� �vvT�u� �
n

�
�

sr

�
� ������

where c is a constant and v is the surface normal� Note that the Householder

matrix I� �vvT performs a re�ection through the tangent plane at r� This BRDF

de�nes a cosine lobe about an axis in the direction of mirror re�ection� as shown

in Figure ����� Because 
 obeys the reciprocity relation 
�u�� u� $ 
�u� u���
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the radiance re�ected in the direction �u� can be found by integrating over the
distribution shown in the �gure� To obey energy conservation the constant c must

be bounded by ����n% ���

Figure ���
	 Analytically computed glossy re�ection of a convex polygon� From left to

right� the moment orders are �
� 	�� and �

�

Figure ����	 Analytically computed glossy re�ection of a stained glass window� From

left to right� moment orders are �
� ��� and �

�

When the luminaire P is Lambertian� the function f�r� �� is constant� Therefore�
the integral in equation ������ reduces to a double�axis moment of P with respect

to the surface normal v and the vector

w � �I� �vvT�u��

Procedure DoubleAxisMoment may therefore be used in this context as well� to

compute the glossy re�ection of a di�use area light source� The technique is demon�
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strated in Figure ���� where the order of the moment is ���� and in Figures ���


and ����� which depict a sequence of moment orders to demonstrate surfaces with

varying �nishes�

More complex BRDFs may be formed by superposing lobes of di�erent orders

and�or di�erent axes� Other e�ects such as anisotropic re�ection and specular

re�ection near grazing can be simulated by allowing c and n to vary with the

incident direction u�
 doing so does not alter the moment computations� however

reciprocity is generally violated�

����� Glossy Transmission

As a �nal example� we note that glossy transmission can be handled in much the

same way as glossy re�ection
 the di�erence is in the choice of the axes w and v�

which must now exit from the far side of the transparent material� Figure ���


shows a sequence of images depicting �frosted glass�� with di�erent �nishes corre�

sponding to axial moments of di�erent orders� This e�ect was �rst demonstrated

by Wallace et al� ��
�� using a form of stochastic sampling
 in Figure ���� a similar

e�ect has been computed analytically using procedure DoubleAxisMoment�

Figure ����	 A frosted glass simulation demonstrating glossy transmission� From left to

right� the moment orders are �� �
� and 	��
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��
 Further Generalizations

We conclude the chapter by describing two further generalizations of the methods

considered thus far� We shall see that the two most fundamental constraints can

in fact be relaxed and� in some instances� still yield analytic solutions� These

generalizations� which are taken up in the following two sections� are �� luminaires

with non�polygonal geometry� and �� luminaires with spatially varying brightness�

����� Spherical Luminaires

Formulas ���
�� and ���

� apply to arbitrary regions A � S�� and therefore to all

luminaire geometries� However� when the luminaire is non�polygonal the spherical

projection will generally not be bounded by great arcs� so we can no longer take

advantage of the simpli�cations exploited earlier� In particular� the normal to the

boundary �A will generally vary continuously� and therefore cannot be removed

from the boundary integral� Nevertheless� there are instances in which closed�form

solutions can still be obtained
 the simplest example being spherical luminaires�

We shall consider the problem of computing the axial moment ��n�A�w� when

A � S� is the unoccluded projection of a sphere� As with polygonal luminaires�

the computation of ��n�A�w� entails a sequence of integrals of the formZ
�A
�w � u�n w � n ds�

which follows from equation ���
��� Since the boundary �A is a circle� it is easily

parametrized� The radius of �A is sin�� where � is the half�angle of the circular

cone de�ned by the luminaire� To conveniently represent the path corresponding

to �A� we introduce a set of orthogonal vectors fa�b� cg where a points toward
the center of the spherical luminaire� Then the dot products w �u and �w �n can
be expressed parametrically as

u��� $ w � �a cos� % �b cos � % c sin �� sin�� �

v��� $ w � �a sin� � �b cos � % c sin �� cos�� �



��


where � � � � ��� The function v can also be expressed in terms of u as

v��� $
w � a
sin�

� u��� cos��

It follows that

�
Z
�A
�w � u�n w � n d� $ sin�

Z ��

�
un��� v��� d�

$ w � a
Z ��

�
un d� � cos�

Z ��

�
un�� d�� ������

where the additional factor of sin� on the right results from re�parametrizing in

terms of arclength� Thus� the normal vector n is incorporated into the integral

rather than factored out� as in the case of polygonal luminaires� We next con�

centrate on evaluating the integrals on the right of equation ������� To simplify

notation we de�ne the following scalar quantities	

a � w � a cos��
b � w � b sin��
c � w � c sin��

With these de�nitions� we may write

Z
un d� $

Z
�a% b cos � % c sin ��n d�

$
Z
� a % h cos�� � �� �n d�� ������

where h � p
b� % c�� and � is the angle such that cos � $ b�h and sin� $ c�h�

When the integral is taken over the range ��� ���� which is true for an unoccluded

sphere� we may set � $ �� Integrals of this form may be evaluated using the

following lemma� which generalizes recurrence relation �������
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Lemma � Let a and h be real numbers� let n be an integer� and de�ne

Fn �
Z
�a% h cos ��n d��

Then Fn satis�es the recurrence relation

nFn $ h�a % h cos ��n�� sin � % a��n� ��Fn�� % �n� ���h� � a��Fn���

where n � �� F� $ �� and F�� $ ��

Proof� The result follows from integration by parts� See Appendix A���

The complete algorithm for evaluating equation ���
�� for a spherical luminaire

is quite similar to the corresponding algorithm for polygons� The integral

�
Z
�A

h
�w � u�n�� % �w � u�n�� % � � �% �w � u�q

i
w � n ds

may be reduced by means of equations ������ and ������ to the expression

w � a � Fn�� % Fn�� % � � � % Fq � � cos� � Fn % Fn�� % � � � % Fq�� � �

where Fn is de�ned as in lemma �� and q $ � if n is even� and q $ � if n is odd�

The above expression is analogous to expression ������� Note that this expression

incorporates all of the integrals F�� F�� � � � � Fn� which are generated naturally by the

recurrence relation in lemma �� and that F� also appears in the left�hand expression

when n is odd� The following pseudo�code summarizes the algorithm�



���

real AxialMoment� sphere S
 vector w
 integer n �

real �� half�angle of cone de�ned by S


if n $ � then return ����� cos��
 Solid angle�

real a� normalized vector toward center of S


real a� �w � a� � cos�

real h�p

��w � a� sin�

real F� � ��


real F� � ��a


real S � if even�n� then � else ��
 Sum terms to n� �
real T � �
 Sum terms to n

for i� �� �� �� � � � � n do

if even�i % n�

then T � T % Fi


else S � S % Fi


Fi�� � � a ��i% �� � Fi % i �h� � a�� � Fi�� � � �i% ��


endfor

real A� �w � a� � S � cos� � T 

if even�n� then A� A % ����� cos��
 Add solid angle�

return A � �n % ��


end

This procedure easily generalizes to spheres that are partially occluded by poly�

hedra or other spheres� In such a case� the outer contour of the visible portion of

a given sphere is a collection of lines and circular arcs�

����� Spatially Varying Luminaires

This section describes several fundamental observations about the problem of com�

puting moments of luminaires whose directional distributions are a function of

position
 we refer to such luminaires as spatially varying� Handling this type of lu�

minaire is an important generalization with immediate applications to high�order

�nite element methods for simulating global illumination� We shall demonstrate
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Figure ����	 A polynomial over the plane may be represented as a rational polynomial

over the sphere�

that �� the problem is equivalent to integrating a class of rational functions over

the sphere� �� moments of spatially varying luminaires are interrelated via a gen�

eralization of recurrence relation ������� and �� even for polygonal luminaires with

polynomially varying brightness� cases arise in which no solution in terms of ele�

mentary functions is possible�

We shall only consider luminaires with polynomially varying radiant exitance


this type of variation can be accommodated by a simple generalization of irradiance

tensors� In particular� we introduce tensors whose elements are a restricted form

of rational polynomials integrated over regions of the sphere�

To see how rational polynomials arise in this context� consider a polygonal lu�

minaire P � IR� in a plane not containing the origin� Suppose that the radiant

exitance of P varies according to a polynomial ��u� v� with respect to some orthog�

onal coordinate system �X��Y�� and origin Q in the plane� To compute angular

moments of f��� ��� the radiance distribution function at the origin� we �rst ex�
press this function in terms of direction cosines� Let w � S� denote the vector

orthogonal to the plane and let h denote the distance between the plane and the

origin� as shown in Figure �����
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Let r � IR� be an arbitrary point on the plane� and let �x�� y�� denote its local

coordinates with respect to the imposed coordinate frame� That is�

x� $ �r�Q� �X��

y� $ �r�Q� �Y��

To express these coordinates in terms of direction cosines� we employ the usual

notation u � r� jj r jj and note that h $ jj r jj u �w� Then

r $
h

u �w u�

It follows that the polynomial function de�ned on the surface of the luminaire may

be expressed as a rational polynomial over the sphere� Speci�cally

��x�� y�� $ �

�
h
u �X�

u �w % tx� h
u �Y�

u �w % ty

�
� ������

where tx $ Q � X�� and ty $ Q � Y�� By expanding the above expression and

regrouping terms� it follows that the radiance distribution function at the origin

may be expresses as

f����u� $ b��x� y� z�� ������

where x� y� and z are the direction cosines of r� and b� is the rational polynomial�
The form of b� is constrained� however� as only powers of u � w appear in the

denominator� To integrate polynomials of this form over regions A � S�� such as a

spherical polygon� we introduce a tensor whose elements are integrals of appropriate

rational functions� We de�ne

Tn�q�A�w� �
Z
A

u� � � � � u

�u �w�q d��u�� ������

Then the integral of b��x� y� z� over A� and all of its moments� can be formed from
elements of the new tensors� Note that Tn�q reduces to Tn when q $ �� We shall

show that the new tensors with rational elements satisfy a recurrence relation of

the form

Tn�q $ Gn�q�T
n���q�Tn���q��� %Hn�q��A��
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where all components implicitly depend on the axis w and the region A � S��

Equation ������ is thus an extension of equation �������

Theorem �� Let n � � and q � � be integers with n � q� and let A � S� be a

measurable set� Then the tensor Tn�q�A�w� satis�es the recurrence relation

Tn�q
Ij $

�

n� q % �

�
n��X
k��

�j IkT
n���q
I�k � qwj T

n���q�� �
Z
�A

un��I nj
�u �w�q ds

�
� ������

where I is an �n � ���index� ds denotes integration with respect to arclength� and

n is the outward normal to the curve �A�

Proof� The proof parallels that of equation ������� See Appendix A���

By theorem �� we see that all high�order tensors Tn�q with n � q can be reduced

to a sequence of rational boundary integrals and lower�order tensors� with n � q�

While this provides a means of reducing the order of these tensors� two problems

remain	 �� computing the boundary integrals� and �� computing the base cases�

We shall pursue the second point in the remainder of this section and expose one

of the di�culties associated with spatially varying luminaires�

A complication that arises in dealing with spatially varying luminaires is that

integrals of rational polynomials over the sphere cannot always be reduced to el�

ementary functions� even when the domain of integration is a spherical polygon


in this respect the problem of spatially varying luminaires is intrinsically more

di�cult than directional luminaires� One form of integral that arises is

���� �� �
Z �

�
log

�
� % �� sec� �

�
d�� ������

where � � � � ��� and � � �� which has no elementary solution in general�

Figure ���� shows the graph of ���� �� for several values of �� For some parameters

equation ������ reduces immediately to known de�nite integrals� For instance�
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Figure ����	 The function ���� �� plotted as a function of � over the interval ��� �����

Here � 
 ���� �� �� �� and �� starting from the bottom curve�

when � $ ���� we may apply the formula

Z ��

�
log

�
a� cos� � % b� sin� �

�
d� $ � log

�
a% b

�

�
� ����
�

due to Gr'obner and Hofreiter ���� vol� II� pp� ��)
��� and derived in a di�erent

manner by Carlson ����� to show that

������ �� $ � log
�
� %

q
� % ��

�
� ������

For other parameters� however� evaluation of ���� �� involves at least one special

function� In particular� in Appendix A�
 we show that integral ������ can be

expressed either in terms of the dilogarithm with a complex argument� or in terms

of the Clausen integral ���������� It is interesting to note that the dilogarithm also

appears in computing the form factor between two arbitrary polygons� as shown

by Schr'oder and Hanrahan ������

We now show that evaluating integral ������ is a prerequisite for solving the

general problem of polynomially varying luminaires� and not the consequence of
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Figure ����	 The irradiance at the origin due to a triangular luminaire with quadratically

varying radiant exitance is given by ���� a��

a particular solution strategy� To show this� we reduce the problem of computing

��x� y� to that of computing the irradiance due to a two�parameter family of

luminaires with spatially varying radiant exitance�

Let � denote the triangle in Figure ����� which has two parameters	 the angle

� and the edge length �� Let A denote the spherical projection of the triangle�


���� and let ���� �� denote the irradiance at the origin due to this luminaire
with radiance distribution given by

f�r�u� � �
�
r�x % r�y % �

�
�

Thus� the radiance varies quadratically with position� but is independent of direc�

tion� It follows that the irradiance at the origin due to this luminaire is

���� �� $
Z
A
f
�
u

z
��u

�
cos � ��u�

$ �
Z
A

��
x

z

��
%
�
y

z

��
% �

�
z ��u�

$ �
Z
A

�

z
��u�� ������

The problem therefore reduces to integrating the rational function ��z over the

region A � S�� where A depends on the parameters � and �� To evaluate this
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integral� we �rst convert it from an integral over solid angle to an integral over the

area of the luminaire� By equation ������ we have

d�

cos �
$
�

r�
dA�

Using this relationship� and the fact that z $ cos � in this con�guration� the integral

in equation ������ can be written in Cartesian form as

Z Z
�

�

x� % y� % �
dx dy� �������

Finally� changing variables once again� to polar coordinates this time� the integral

reduces to ���� �� after simpli�cation� We have

�
Z
A

�

z
��u� $

Z �

�

Z � sec �

�

�

� % r�
r dr d�

$
Z �

�
log�� % r��

���� sec �

�
d�

$ ���� ��� �������

Therefore� any method capable of computing irradiance due to polygonal lumi�

naires with polynomially varying radiant exitance must also be capable of evalu�

ating the function ���� �� over its entire range of parameters�

These results constitute a start toward obtaining closed�form expressions for

moments of luminaires whose radiant exitance varies polynomially over the surface�

However� the meaning of �closed�form� in this context must be expanded to include

at least one special function� such as Clausen�s integral� or the function ���� ���



Chapter �

Comparison with Monte Carlo

Monte Carlo is a versatile simulation method that can be applied to virtually any

problem of numerical approximation� In this chapter we describe several Monte

Carlo integration methods for computing irradiance tensors and axial moments

of all orders� The results are compared with those generated by the algorithms

of chapter � to provide independent evidence of their correctness� This method

of validation is appealing because the Monte Carlo algorithms are comparatively

simple and rely on entirely di�erent principles� making the chance of a systematic

error remote�

A typical Monte Carlo strategy consists in converting a deterministic prob�

lem to a problem of statistical parameter estimation� such as estimating the mean

value of a random variable� The e�ectiveness of the method hinges on the costs

and statistical properties of the random variable so considerable e�ort is usually

warranted in devising random variables with the correct mean and low variance�

Monte Carlo methods are particularly well suited to problems of multi�dimensional

integration� largely because of the close connection between integration and sta�

tistical expectation� Consequently� Monte Carlo integration appears throughout

computer graphics
 examples include estimating form factors ��
��� visibility �����

and illumination from complex or partially occluded luminaires ���
��

���



��


We shall describe two Monte Carlo strategies for estimating irradiance tensors

and double�axis moments	 one strategy is based on rejection sampling and the other

on strati�ed sampling� The strati�ed sampling is performed using a new algorithm

for generating uniformly distributed random samples over spherical triangles� which

has applications beyond those explored in this chapter�

��� Sampling by Rejection

The rejection method is the simplest and most general method for generating ran�

dom samples according to a given distribution �
��� and is particularly useful in

dealing with irregular domains� The idea is to embed the desired distribution in

a larger domain that can be sampled conveniently� and ignore samples that land

outside the target domain� The remaining samples are then distributed appropri�

ately� To obtain a Monte Carlo estimator of Tn�A� based on the rejection method�

we observe that

Tn�A� $
Z
A
un d��u�

$ ��
Z
S�
X
A
�u� u� � � � � u

d��u�

��
� �����

where d���� denotes integration with respect to the measure � weighted by �����

and X
A
is the characteristic function of the set A de�ned by

X
A
�x� �

����� � if x � A

� otherwise�
�����

The measure ���� is positive and normalized to one� since ��S�� $ ��� which

makes it a probability measure� Consequently� equation ����� may be viewed as the

expected value of a random tensor variable� The essence of Monte Carlo lies in

this shift of focus� by which equation ����� is given a probabilistic interpretation�

To make this interpretation precise� let � denote a random vector in S� dis�
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tributed in such a way that

Prob� � � " � $ ��"�

��
� �����

for any subset " � S�� Since the measure � is invariant under rotations� the

probability density of � is constant over the domain S�
 we say that � is uniformly

distributed over the sphere� The relationship between � and � will be denoted by

� � �

��
� �����

When the random variable � is uniformly distributed� equation ����� implies that

Tn�A� $ ��
D
X
A
��� � � � � � � �

E
� �����

where h x i denotes the mean� or expected value� of the random variable x� The

random variable X
A
��� ��� � ��� is called a primary estimator of Tn�A� and may

be used in constructing other estimators ����� Obtaining a primary estimator by

expanding the domain of integration� as we have done above� is the basis of the

Monte Carlo rejection method� Since the estimator is zero whenever � �� A� it is

only a crude approximation in itself� especially when ��A� is small�

To obtain a more desirable secondary estimator� one with lower variance� we

de�ne a new statistic �n
� by

�n
� �A�m� �

��

m

mX
i��

X
A
��i� �i � � � � � �i� �����

where ��� ��� � � � � �n are identically distributed random vectors chosen uniformly

over the sphere S�� The new random variable is the sample mean for a sample of

size m� which has the same expected value as the primary estimator� Therefore�

Tn�A� $ h�n
� �A�m� i ���
�

for any m � �� By the law of large numbers we have

lim
m��

�n
� �A�m� $ Tn�A�� �����



���

with probability � whenever the variance is �nite� Thus� the random vector

�n
� �A�m� is an unbiased estimator for T

n�A� the variance of which is controlled by

the parameter m� In practice we use �n
� �A�m� with a �xed m to estimate Tn�A�	

�n
� �A�m� � Tn�A�� �����

Similarly� we may estimate the double�axis moment ���n���A�w�v� directly by

���
n

� �A�w�v� m� �
��

m

mX
i��

X
A
��i� ��i �w�n ��i � v� � ������

rather than estimating the corresponding tensor� The estimators �n
� and

���
n

� are

easily computed provided that we have some means of generating the random

vectors �i�

A well�know method for simulating the random vector � is based on the

following fact	 a horizontal section through the unit sphere corresponding to

z � �a� b� � ���� �� has surface area b � a� which implies that sections of equal

height have equal area� Consequently� given two random variables �� and �� that

are uniformly distributed in the unit interval ��� ��� the three�tuple

� � Normalize � cos ����� sin ����� �� ��� � � ������

is uniformly distributed over the sphere� Here �� selects the z�coordinate uniformly

from ���� ��� and �� selects the rotation about the z�axis uniformly from ��� ����

Equation ������ de�nes a transformation of the unit square ��� ��� onto the sphere

that preserves uniform distributions� We construct a similar mapping for spherical

triangles in the following section�

��� Strati�ed Sampling

One of the most common methods of improving the statistical e�ciency of a Monte

Carlo algorithm is strati�ed sampling �
��
 within the computer graphics literature

this technique is also known as jitter sampling ����� The idea behind strati�ed
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sampling is to partition the region being sampled into disjoint subregions� or strata�

which are then sampled independently� Used in conjunction with Monte Carlo

integration� strati�ed sampling reduces the variance of the estimator when the

integrand varies slowly over portions of the domain ���� p� ���� Hence� Monte

Carlo integration of continuous functions will generally bene�t from strati�cation�

Let us �rst see how to reformulate the previous estimators when there is only

one stratum� which corresponds to the entire region A � S�� In this case we have

Tn�A� $ ��A�
Z
A
u� � � � � u

d��u�

��A�

$ ��A� h �� � � � � � �� i � ������

with

�� � �jA
��A�

� ������

where �jA is the measure � restricted to A� Thus� �� is uniformly distributed over
the region A � S�� This leads to the new secondary estimators

�n
� �A�m� � ��A�

m

mX
i��

��i � � � � � ��i�

���
n

� �A�w�v� m� � ��A�

m

mX
i��

���i �w�n ���i � v� � ������

where ���� �
�
�� � � � � �

�
m are independent random vectors distributed uniformly over

the set A� The estimators �n
� �A�m� and

���
n

� �A�w�v� m�� which are based on m

strata� are de�ned similarly	

�n
� �A�m� �

mX
i��

��Ai� �
��
i � � � � � ���i �

���
n

� �A�w�v� m� �
mX
i��

��Ai� ��
��
i �w�n ����i � v� � ������

where A�� A�� � � � � Am is a partition of the domain A� and the random vector ���i is

uniformly distributed over the ith subregion of A� That is�

���i �
�jAi

��Ai�
� ������
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If the subregions are reasonably shaped� meaning convex with aspect ratios near

one� then the samples will be more evenly spread over the domain� This property

signi�cantly reduces the clumping that inevitably occurs with uniform sampling

and generally reduces the variance of estimators based on the samples� Of course�

this method can only be applied if we have a means of generating samples from

the given strata� In the case of �n
� and

���
n

� � this requires sampling regions of the

sphere� We now address this problem for the special case of spherical triangles�

which can be applied to arbitrary spherical polygons�

����� An Algorithm for Sampling Spherical Triangles

The general problem of generating uniformly distributed samples over a given n�

dimensional domain may be solved by constructing a one�to�one mapping from a

rectangular domain onto the given domain that preserves uniform distributions�

Such a mapping f 	 ��� ��n � X must have the following property	 If S� and S�
are two subsets of ��� ��n with equal volumes� then f�S�� and f�S�� are subsets of
X with equal volumes� Obtaining a mapping with this property is generally di��

cult because it involves the inversion of one or more cumulative marginal density

functions
 a step that frequently entails numerical root��nding �
���

Given such a mapping� however� we may then generate the samples over the

simple domain and then transform them to the complex domain X� In contrast

to rejection� this method guarantees that all samples will fall within the desired

region� Therefore� one advantage of this approach is that no samples are wasted�

A far greater advantage is that it leads to a simple means of strati�ed sampling�

The mapping of the unit square onto an arbitrary spherical triangle may be

constructed using elementary spherical trigonometry� Let T be the spherical trian�

gle with area A and vertices A� B and C� Let a� b� and c denote the edge lengths

of T� and let �� �� and � denote the three internal angles� which are the dihe�

dral angles between the planes containing the edges� See Figure ���� To generate
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uniformly distributed samples over T we seek a bijection f 	 ��� ��� � T with the

property described above� The function f can be derived using standard Monte

Carlo methods for sampling bivariate functions� as described by Spanier and Gel�

bard ����� and Rubinstein ������ To apply these methods to sampling spherical

triangles we require the following three identities	

A $ � % � % � � �� ����
�

cos � $ � cos� cos � % sin� sin � cos c� ������

cos � $ � cos � cos� % sin � sin� cos b� ������

The �rst is Girard�s formula� which we have already encountered in chapter �� and

the other two are spherical cosine laws for angles ����� In all� there are six versions

of the spherical law of cosines	 three for angles and three for edges�

To generate a sample from T we proceed in two stages� In the �rst stage we

randomly select a subtriangle bT � T with an area bA that is uniformly distributed

between � and the original area A� In the second stage we randomly select a point
along an edge of the new triangle� Both stages require the inversion of a probability

distribution function�

The subtriangle bT is formed by choosing a new vertex bC on the edge between

A and C� and the sample point P is then chosen from the arc between B and bC�
as shown in Figure ���� The point P is determined by �nding its distance � from

B as well as the length of the new edge bb
 the values bb and � are computed by

inverting the distribution functions

F�� bb � �
bA
A � ������

F�� � j bb � � �� cos �
�� cos ba� ������

where equation ������ is the conditional probability distribution of � given bb� Note
that both bA and ba are taken to be functions of bb in the equations above� Given
two random variables �� and �� uniformly distributed in ��� ��� we �rst �nd bb by
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Figure ���	 The vertex bC is determined by specifying the area of the subtriangle AB bC�
and the point P is chosen from the arc between bC and B�

solving F�� bb � $ ��� which is equivalent to bA�bb� $ ��A� Then bb will correspond
to random subtriangles of T whose areas are uniformly distributed between � and

A� Having found bb in this way� the next step is to �nd � such that F�� � j bb � $ ���

Then � will be distributed along the edge B bC with a density that increases towardbC
 more precisely� the density will be proportional to �� � cos �� d�� which is the
area of the isosceles triangle with di�erential angle d� and height ��

We now carry out these two steps explicitly� To �nd the edge length bb that
produces a subtriangle of area A ��� we use equations ����
� and ������ to obtain

cos bb $ cos��� b�� cos� � cos b�
sin��� b�� sin� � ������

where � � bA��� Equation ������ completely determines bb� since � � bb � �� From

equations ����
� and ������ it follows that

u cos b� % v sin b� $ �� ������

where

u � cos��� � cos��

v � sin��� % sin� cos c�
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Figure ���	 The point P is chosen using a coordinate system with vertex B de�ning the

vertical axis� The height z of P is uniformly distributed between bC �B and ��

Solving equation ������ for the sine and cosine of b�� we have
�sin b�� cos b�� $ �� �up

u� % v�
�

vp
u� % v�

�
�

where the sign is determined by the constraint � � b� � �
 however� the sign will be

immaterial in what follows because only ratios of these quantities will be needed�

Simplifying equation ������ using the above expressions� we obtain

cos bb $ � v cos�� u sin� � cos� � v

� v sin�% u cos� � sin�
� ������

Note that cos bb determines bb� which in turn determines the vertex bC�
As the �nal step� we select a point along the arc connecting bC and B� After

choosing a convenient coordinate system� as shown in Figure ���� a random point

is selected on the vertical �B��axis� with a height z uniformly distributed betweenbC � B and �� The point P is then constructed by projecting horizontally to the

arc between bC and B� as shown in Figure ���� These steps correspond to solving

for z � cos � using equation ������ and the equation cos ba $ bC �B� The complete
algorithm is given in the next section�
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����� Implementation and Results

In this section we present the complete sampling algorithm as well as the com�

putation required for setup� First� the procedure De�neTriangle computes all the

required quantities associated with a spherical triangle from the three vertices�

which are assumed to be unit vectors�

De�neTriangle� vector A�B�C �

Compute the internal angles�

�� cos�� �Normalize�B�A� � Normalize�A�C�� 


� � cos�� �Normalize�C�B� � Normalize�B�A�� 


� � cos�� �Normalize�A�C� � Normalize�C�B�� 


Compute the edge lengths�

a� cos���B �C�

b� cos���A �C�

c� cos���A �B�


Compute the area of the triangle�

A � � % � % � � �


end

We shall assume that the values computed by this procedure are available to

the sampling algorithm� so De�neTriangle is a required pre�processing step� To

succinctly express the sampling algorithm we shall let �x jy � denote the normalized
component of the vector x that is orthogonal to the vector y� That is�

�x jy � � Normalize �x� �x � y�y� � ������

The algorithm for mapping the unit square onto the triangle T may then be

summarized as shown below� The input to the procedure consists of two variables�

�� and ��� each in the unit interval� and the output is a point P � T � S��
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point SampleTriangle� real ��� real �� �

Use one random variable to select the new area�bA � �� � A

Save the sine and cosine of the angle ��

s� sin� bA� ��


t� cos� bA� ��


Compute the pair �u� v� that determines b��
u� t� cos�

v � s% sin� � cos c


Let q be the cosine of the new edge length bb�
q � �v � t � u � s� � cos� � v

�v � s % u � t� � sin� 


Compute the third vertex of the subtriangle�bC� q �A%
p
�� q� � �C jA �


Use the other random variable to select cos 	�

z � �� �� � ��� bC �B�

Construct the corresponding point on the sphere�

P� z �B %
p
�� z� � � bC jB �


return P


end

To generate uniformly distributed points over the triangle� we supply �� and

�� that are independent random variables� uniformly distributed over ��� ��� For

example� these values might be supplied by a pseudo�random number generator�

such as the algorithm proposed by Haas �����

Note that cos�� sin�� cos c� and �C jA � in procedure SampleTriangle need

only be computed once per triangle� not once per sample� Consequently the cost

of computing these values� as well as invoking procedure De�neTriangle� can be

amortized when many samples are to be generated from the same triangle� When

few samples are required from a given triangle� the cost per sample is much higher�
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Figure ���	 �a� A spherical triangle sampled randomly with the new algorithm� �b� By

applying the transformation to strati�ed samples in the unit square� we obtain strati�ed

samples over the triangle� with much better statistical properties�

Using procedure SampleTriangle� which provides a mapping of the unit square

onto any given spherical triangle� it is straightforward to perform strati�ed sam�

pling� This can be done simply by stratifying the input arguments ���� ��� in

the unit square� Because the mapping implemented by SampleTriangle is one�to�

one� the strati�cation is carried over to the triangle T� The sampling algorithm

may also be applied to spherical polygons by decomposing them into triangles and

performing strati�ed sampling on each component independently� This strategy

provides an e�ective means of sampling the solid angle subtended by a polygon

and is analogous to the method proposed by Turk ����� for planar polygons�

Figure ��� shows the results of the new algorithm applied in two di�erent ways�

On the left� the samples are uniformly distributed� resulting in a pattern that is

equivalent to that obtained by a rejection method� Each of the samples is guaran�

teed to land within the triangle� however� which is not the case with rejection� The

pattern on the right was generated by �rst stratifying the input arguments using

a regular grid� which dramatically improves the characteristics of the pattern�



���

��� Veri�cation of Assorted Formulas

Results generated by the closed�form expressions described in chapter � were com�

pared with the Monte Carlo estimators described in this chapter� In the �rst test�

analytically computed irradiance tensors of orders � and � were compared with the

corresponding Monte Carlo estimates� The tensors were computed at a sequence

of ��� points along a line that was illuminated by two di�use quadrilateral lumi�

naires� The analytic results were compared with the Monte Carlo estimates in two

ways�

Figure ��� shows the maximum deviation among all the tensor elements for

the �th�order tensor� The results of both uniform and strati�ed sampling are

shown� The vertical axis is the error in the matrix element with the largest absolute

deviation from the exact value� and the horizontal axis corresponds to position�

The plot clearly shows the large reduction in variance from uniform sampling to

strati�ed sampling� and also provides independent veri�cation of the closed�form

expression�

In Figures ��� and ��� a single element was chosen from each tensor and com�

pared to the corresponding element of the Monte Carlo estimator� Figure ��� is

the graph of xyz integrated over the solid angle subtended by the luminaires� and

Figure ��� is a plot of x�y�z� over the same range of positions� Only strati�ed

sampling is shown�
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Figure ���	 The signed maximum deviation of the Monte Carlo estimate of T��A�

from the analytic solution� Both strati�ed and uniform sampling with �
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Figure ���	 The exact element T�
������ and a Monte Carlo estimate using �� samples�

As a second test� the formulas for double�axis moments were veri�ed using the

corresponding Monte Carlo estimators� The solid line in Figures ��
 and ��� is the

graph of the ��th�order double�axis moment with respect to two polygons as the

major axis is rotated across them�

Figure ��
 also shows the result of an estimator based on uniform sampling at

each of ��� positions of the axis� while Figure ��� shows the result of strati�ed

sampling� The same scenario is shown in Figures ��� and ���� where the moment

order has been increased to ���� The plots show agreement between the analytic

solutions and the Monte Carlo estimators� and also demonstrate the e�ectiveness

of strati�ed sampling in reducing variance�

An advantage of unbiased Monte Carlo estimates is that the independent tests

taken together provide additional evidence of correctness� This follows by observing

that the estimates are approximately evenly split among positive and negative

deviations from the analytic solution�
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Chapter �

Operators for Global Illumination

Thus far we have considered only direct illumination
 that is� processes relating

to light emission� shadowing� and �rst�order re�ection� In this chapter we con�

sider the global illumination problem� which includes the simulation of both direct

and indirect components of illumination� and therefore accounts for interre�ections

among surfaces� This problem has received much attention in the �elds of radia�

tive transfer� illumination engineering� and computer graphics� Within the �eld

of computer graphics global illumination encompasses all illumination problems

that include indirect lighting� while the term radiosity refers to the special case of

environments with only Lambertian surfaces� The latter terminology originated in

engineering heat transfer� where problems of precisely the same nature arise�

The principles of geometrical optics are appropriate for simulating global illu�

mination because the relevant interactions occur only at large scales and involve

incoherent sources of light
 thus� e�ects due to interference and di�raction are neg�

ligible� Physical or wave optics e�ects may enter as well� but only at the level of

surface emission and scattering� which is incorporated into the boundary conditions

of the global illumination problem�

Because light transport is a �ow of energy� it is subject to thermodynamic con�

straints� In particular� the �rst and second laws of thermodynamics have a direct

���



���

bearing on the process of light scattering� These laws require energy to be con�

served and impose a reciprocity condition on surface re�ectance� The reciprocity

law for surface re�ection can be demonstrated directly by means of a hypothetical

con�guration inside an isothermal enclosure ����� p� ���� or deduced as a special

case of the general principle attributed to Helmholtz� which applies to all forms of

electromagnetic energy propagation�

The physical principles governing global illumination can be embodied in a

single equation� most commonly formulated as a linear integral equation� In this

regard surface�based radiation problems di�er fundamentally from those of conduc�

tion or convection� which are most naturally posed as di�erential equations ������

The linearity of the equation is a consequence of the simplifying assumptions im�

plicit in geometrical optics� and discussed in chapter �� For instance� we neglect

energy transfer between wavelength bands due to absorption and re�emission at

surfaces� This assumption is valid to extremely high accuracy for illumination

problems
 only at very high temperatures does re�emission become signi�cant in

the visible part of the spectrum�

Equivalent formulations of the governing integral equation have appeared in nu�

merous contexts� In illumination engineering� Moon ����� p� ���� gave a restricted

version of the equation in terms of luminosity� the photometric counterpart of

radiant exitance� which holds for di�use environments� In thermal engineering�

Polyak ���
� posed the integral equation in terms of radiance and in a form that

holds for arbitrary surface re�ectances� Within computer graphics� Immel et al� �
��

presented an equation equivalent to Polyak�s� and Kajiya �
�� o�ered a new formu�

lation� known as the rendering equation� expressed in terms of multi�point transport

quantities but otherwise equivalent to Polyak�s version� Kajiya�s formulation has

provided a theoretical foundation for all global illumination algorithms since its

introduction in �����

In this chapter we reformulate the governing equation for global illumination in
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Figure ���	 The local coordinates of a bidirectional re�ectance function� The incident

vector u� and the re�ected vector u are in world coordinates� The angles de�ne a local

coordinate system�

terms of linear operators� which we then study in depth using standard techniques

of functional analysis� The analysis naturally subsumes direct illumination as a

special case� The new formulation clari�es the roles of various physical constraints


in particular� those of the �rst and second laws of thermodynamics� We identify

appropriate function spaces for surface radiance functions� and show that the global

solution satisfying the operator equation must lie within the same space as the

surface emission function� Finally� we demonstrate that the new operator equation

is equivalent to Kajiya�s rendering equation and give an alternate interpretation

of transport intensity� which is the quantity he used to express the equation� For

simplicity� we assume monochromatic radiation throughout�

��� Classical Formulation

LetM denote a piecewise�smooth ��manifold in IR� corresponding to the surfaces

of an environment� and assume for now thatM forms an enclosure� Let X denote

a vector space of real�valued surface radiance functions de�ned onM�S�
 that is�
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functions de�ned over all surface points and outward directions in the unit sphere

S�� Given a surface emission function f� � X� which speci�es the origin and

directional distribution of emitted light� the global illumination problem consists

in determining the surface radiance function f � X that satis�es the linear integral

equation

f�r�u� $ f��r�u� %
Z
�i

k�r
u� � u� f�r��u�� cos �� d��u��� �����

where "i is the hemisphere of incoming directions with respect to r � M� k is

a directional re�ectivity function� �� is the polar angle of the incoming direction

vector u�� and r� is a point on a distant surface determined by r and u�� See

Figure ���� This equation is essentially the formulation posed by Polyak ���
��

which embodies the same physical principles as Kajiya�s rendering equation �
���

Equation ����� is essentially a Fredholm integral equation of the second kind


however it does not precisely conform to the standard de�nition because of the

implicit function r�� which depends on the argument r and the dummy variable u��

This seemingly minor di�erence is responsible for the most important distinguish�

ing feature of radiative transfer problems
 the non�localness of the interactions�

This feature is crucial to retain� although it is di�cult to work with as it appears

in equation ������ One solution is to rephrase the integral in equation ����� in

terms of direct transfers among surfaces� which eliminates the implicit function�

This was the approach taken by Kajiya� An alternative is to represent the in�u�

ence of distant surfaces using an explicit linear operator� The latter approach has

several advantages� as demonstrated below�

To precisely de�ne the function r� appearing in equation ������ we introduce

two intermediate functions similar to those employed by Glassner ��
�� First� the

boundary distance function ��r�u� is de�ned by

��r�u� � inf fx � � 	 r% xu � Mg �

which is the distance from r to the nearest point on the surfaceM in the direction
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of u� WhenM does not form an enclosure� it is possible that no such point exists


in such a case ��r�u� $ � by de�nition� Next� we de�ne the closely related ray

casting function p�r�u� by

p�r�u� � r% ��r�u�u�

which is the point of intersection with the surfaceM when one exists
 the function

is unde�ned if no such point exists� Thus� we have

r��r�u�� $ p�r��u���

The kernel function k appearing in equation ����� is the bidirectional re�ectance

distribution function �BRDF� at each surface point phrased in terms of world�space

direction vectors rather than angles� as it more commonly appears� That is�

k�r
u� � u� � 
r��
�� ��� �� ��� �����

where u� and u denote incident and re�ected directions respectively� and 
 is the

conventional radiometric de�nition of a BRDF ��������� which is expressed in terms

of four angles relative to a local coordinate system at the point r� as shown in

Figure ���� Here ���� ��� and ��� �� denote the polar and azimuth angles of the

incident and re�ected directions respectively� By de�nition k is insensitive to the

sign of its vector arguments
 the angles formed with respect to the local coordinate

system are the same whether the vectors are directed toward or away from the

surface� This convention is convenient for opaque surfaces� where there is no need

to disambiguate two distinct incident hemispheres�

Note that the BRDF may be an arbitrary function of position on M� cor�

responding to changing materials or surface properties� and that all scattering is

assumed to take place at the surface� The latter assumption is an idealization since

the physical process of re�ection may involve some amount of sub�surface scatter�

ing ������ Consequently� the points of incidence and re�ection need not coincide

for real materials� We shall ignore this e�ect here�
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The function k has two crucial properties that follow from the thermodynamic

principles of energy conservation and reciprocity� By conservation we have

Z
�o

k�r
u� � u� cos � d��u� � �� �����

where u� � "i� and "o is the outgoing hemisphere� Both "i and "o implicitly

depend on the surface point r� Equation ����� states that the energy re�ected from

a surface cannot exceed that of the incident beam� Reciprocity states that

k�r
u� � u� $ k�r
u� u�� �����

for all u� � "i and u � "o� These facts play a major role in the following analysis�

Note that the implicit function r� in equation ����� is the means of constructing

the distribution of energy impinging on a surface from the distribution of energy

leaving distant surfaces
 that is� it constructs local �eld radiance from distant

surface radiance� The connection a�orded by r��r�u�� corresponds to the intuitive

notion of tracing a ray from r in the direction �u�� This simple coupling is a

consequence of steady�state radiance being invariant along rays in free space
 in

the presence of participating media the coupling is replaced by the equation of

transfer along the ray ����� which turns equation ����� into an integro�di�erential

equation ����

Equation ������ which �rst appeared in this general form in thermal engineering�

is a continuous balance equation governing the direct exchange of monochromatic

radiant energy among surfaces with arbitrary re�ectance characteristics� In current

radiative heat transfer literature� this governing equation is used only when par�

ticipating media are ignored ��������� In current computer graphics literature� this

equation and its equivalent formulations are the foundation for most physically�

based rendering algorithms�
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(a) (b) (c)

KG

r rr

Figure ���	 The actions of G and K at a single point r� The operator G converts �a�

distant surface radiance directed toward r into �b� local �eld radiance� where �c� it is

again mapped into surface radiance by K�

��� Linear Operator Formulation

Integral equations such as equation ����� can be expressed more abstractly as

operator equations� Operator equations tend to be more concise than their integral

counterparts while capturing essential algebraic properties such as linearity and

associativity of composition� as well as topological properties such as boundedness

or compactness �
������� The abstraction a�orded by operators is appropriate

when the emphasis is on integrals as transformations rather than on the numerical

aspects of integration� Operator equations were �rst applied to global illumination

by Kajiya �
�� although their connection with integral equations in general has

been studied for nearly a century ��
�����

Equation ����� can be expressed as an operator equation in numerous ways�

Here we shall construct the central operator from two simpler ones� each motivated

by fundamental radiometric concepts� The representation given here has two novel

features	 �rst� it cleanly separates notions of geometry and re�ection into distinct

linear operators� and second� it employs an integral operator with a cosine�weighted

measure� Both of these features simplify the subsequent analysis�
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We �rst de�ne the local re	ection operator� denoted by K� which is an integral

operator whose kernel k accounts for the scattering of incident radiant energy

at surfaces� This operator is most easily de�ned by specifying its action on an

arbitrary �eld radiance function h	

�Kh��r�u� �
Z
�i

k�r
u� � u� h�r�u�� d��u��� �����

Equation ����� is essentially the de�nition of a kernel operator ������ with the minor

di�erence that the position r acts as a parameter of the kernel
 consequently� the

integration is over a proper subset of the domain of h� The K operator maps

the �eld radiance function h to the surface radiance function after one re�ection

�Figures ���b�c�� The operation is local in that the transformation occurs at each

surface point in isolation of the others� In equation ����� the measure�theoretic

notation allows us to introduce a new measure � that incorporates the cosine

weighting� The measures � and � are related by

�r�E� �
Z
E
ju � n�r�j d��u�� �����

which holds for any measurable E � S�
 henceforth� the dependence on the position

r will be implicit� The new notation eliminates the proliferation of cosine factors

that appear in radiative transfer computations and� more importantly� emphasizes

that the cosine is an artifact of surface integration� By associating the cosine with

the integral operator and not the kernel� the function k retains the reciprocity

property of re�ectance functions� Moreover� this observation is vital in de�ning

appropriate norms and inner products for radiance functions�

Next� we de�ne the �eld radiance operator� denoted by G� which is a linear

operator expressing the incident �eld radiance at each point in terms of the surface

radiance of the surrounding environment �Figures ���a�b�� Showing the action of

G on a surface radiance function h� we have

�Gh��r�u� �
����� h�p�r��u��u� when ��r�u� ��

� otherwise�
���
�
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The G operator expresses the transport of radiant energy from surface to surface

as a linear transformation on the space of surface radiance functions� The symbol

chosen for this operator is intended as a mnemonic for �global� or �geometry��

De�ning G in this way allows us to factor out the implicit function r��r�u� from

the integral in equation ������ It is easily veri�ed that KG is equivalent to the

original integral and that both K and G are linear� Therefore� we may write

equation ����� as

f $ f� %KG f� �����

which is a linear operator equation of the second kind� This formulation retains the

full generality of equation ������ yet is more amenable to some types of analysis� To

complete the de�nition of equation ����� it is necessary to specify the function space

X over which the operators are de�ned� We return to this point in section ����

To emphasize the linear relationship between surface radiance and surface emis�

sion� equation ����� can be written more concisely as

M f $ f�� �����

where the linear operator M is de�ned by

M � I�KG� ������

and I is the identity operator� The operator M embodies all information about

surface geometry and surface re�ectance� However� since G is determined by the

manifoldM� a global illumination problem is completely speci�ed by the ��tuple

�M�K� f�� of surfaces� local re�ection operator� and surface emission function�

In the following sections we explore fundamental properties of the operators de�

�ned above� In chapter 
 these properties will be used to study numerical methods

for solving equation ����� and identify sources of error�
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��� Normed Linear Spaces

In this section we introduce the basic tools of analysis that will be used in deriving

error bounds for approximate solutions for global illumination� Quantifying error

requires a notion of �distance� between the members of the space X� which implies

a metric of some form� We shall impose metric properties on X by making it a

normed linear space� denoted by the ordered pair �X� jj � jj�� where jj � jj is a real�
valued norm de�ned on X� We summarize a few of the essential properties of

normed linear spaces that pertain to radiative transfer� More complete treatments

are given by Rudin ����� and Kantorovich �
��� for example�


���� Function Norms

In�nitely many norms can be de�ned on a space of radiance functions� each impos�

ing a di�erent topology on the space as well as a di�erent notion of size� distance�

and convergence� Since equation ����� requires only that radiance functions be

integrable with respect to the kernel k in order to be well de�ned� it is natural to

consider the Lp�norms and their corresponding function spaces� The appropriate

de�nition for the Lp�norm of a radiance function is

jj f jjp �
�Z
M

Z
S�
j f�r�u�jp d��u� dm�r�

���p
� ������

where m denotes area measure� and p is a real number in ������ Here f will

typically denote either a surface or �eld radiance function� which is zero over one

hemisphere� De�nition ������ is also meaningful for p � �� but the corresponding

norms are not strictly convex and are normally excluded ����� The function space

Lp�M�S�� m��� is then de�ned to be the set of measurable functions overM�S�

with �nite Lp�norms� Three of the Lp�norms are of particular interest� The L� and

L��norms have immediate physical interpretations� while the L��norm possesses

algebraic properties that make it appropriate in some instances
 for example� when

the structure of a Hilbert space is required to de�ne projection�based methods�
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In the limiting case of p $�� the Lp�norm reduces to

k f k� � ess sup
r�M

ess sup
u�S�

j f�r�u� j � ������

where � ess sup� is the essential supremum
 that is� the least upper bound obtain�

able by ignoring a subset of the domain with measure zero ������ More precisely�

if h is a real function de�ned on a set A� then

ess sup
x�A

h�x� � inf fm j h�x� � m for almost every x � A g � ������

Thus� the L��norm ignores isolated maximal points� for example� As themaximum

radiance attained �or approached� over all surface points and in all directions�

k f k� has the dimensions of radiance �watts�m�sr�� In contrast� k f k� is the total
power of the radiance function f � and consequently has the dimensions of power

�watts�� The L��norm is related to vector irradiance by

k f k� $
Z
M

j �r� � n�r� j dm�r�� ������

where  �r� is the vector irradiance at r due to the the radiance distribution function

f�r� ��� and n�r� is the surface normal at r�
To assign a meaning to the distance between two radiance functions f and f �

in a normed linear space X� we may use the induced metric jj f � f � jj� Similarly�
we may de�ne the distance between a function and a subspace Y � X by

dist� f� Y � � inf
f ��Y

jj f � f � jj � ������

where �inf� denotes the greatest lower bound� When the subscript on the norm is

omitted� it implies that the de�nition or relation holds for any choice of norm�


���� Operator Norms

To investigate the e�ects of perturbing the operators� as we shall do in the following

chapter� we must also endow the linear space of operators with a norm� If X and
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Y are normed linear spaces and A 	 X � Y is a linear operator� then the operator

norm of A is de�ned by

jjA jj � sup f jjAh jj 	 jjh jj � � g � ������

where the norms appearing on the right are those associated with Y and X� respec�

tively� The operator norm is said to be induced by the function norms� Although

the theory of linear operators closely parallels that of matrices� there are important

di�erences
 for instance� matrix norms are necessarily �nite while operator norms

need not be� We therefore distinguish the class of bounded operators as those with

�nite norm�

Equation ������ implies that jjAh jj � jjA jj jjh jj for all h � X� Operator

norms also satisfy jjAB jj � jjA jj jjB jj whenever the composition AB is mean�

ingful
 this property makes operator norms compatible with the multiplicative

structure of operators �
��� Additional bounds pertaining to inverse operators can

be deduced from these basic properties� For instance� given a bounded operator A

with an inverse� any operator B su�ciently close to A is also invertible� with

kB�� k � kA�� k
�� jjA�B jj kA�� k � ����
�

This holds whenever jjA�B jj � ��kA�� k� Inequality ����
� is known as Ba�
nach�s lemma ����� p� ���� A useful corollary of this result is the inequality

kA�� �B�� k � jjA�B jj kA�� k�
�� jjA�B jj kA�� k � ������

which holds under the same conditions as inequality ����
� �

� p� ����


���� Norms of Special Operators K� G� and M��

We now compute bounds for the operators K� G� andM��� which will be essential

in deriving all subsequent bounds� From de�nitions ������ ������� and ������� we

may deduce an explicit formula for kK k�� A straightforward computation yields

kK k� $ ess sup
r�M

ess sup
u���i

Z
�o

k�r
u� � u� d��u�� ������
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This norm is the least upper bound on the directional�hemispherical re�ectivity of

any surface in the environment� disregarding isolated points and directions� and

other surfaces of measure zero� Equation ����� guarantees that kK k� is bounded
above by one in any physically realizable environment� If we disallow perfect

re�ectors� as well as sequences of materials approaching them� and ignore the wave

optics e�ect of specular re�ection near grazing� the norm has a bound strictly less

than one
 that is�

kK k� $ � � �� ������

When the bound is less than one it is possible to use a Neumann series to derive a

number of related bounds that would otherwise be di�cult to obtain� Therefore�

the motivation for imposing the above restrictions is convenience of analysis rather

than physical constraints� Note that when transparent surfaces are involved� the

phenomenon of total internal re�ection must also be ignored to maintain a bound

that is less than one�

The L��norm of K can be computed in a similar fashion� In precise analogy

with matrix norms� the L��norm merely exchanges the roles of the two directions�

which are the arguments of the kernel	

kK k� $ ess sup
r�M

ess sup
u��o

Z
�i

k�r
u� � u� d��u��� ������

See Appendix A�� for complete derivations of both of these norms� By the reci�

procity relation shown in equation ����� we have kK k� $ kK k�� which implies
that re�ected radiance is everywhere diminished by at least as much as the total

power� It is interesting to note that the L� bound on K implies that it is thermo�

dynamically impossible for a passive optical system to increase the radiance of its

input
 this fact was previously proven by Milne using a very di�erent argument �����

The two bounds on K given above can be extended to a bound on kK kp for
all � � p ��� The connection is provided by the following theorem�
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Theorem �� If Ais a kernel operator� then kA kp � max f kA k�� kAk� g�

Proof� See Appendix A���

Although theorem �� applies to standard kernel operators it can be extended

slightly to accommodate the local re�ection operator K� which is kernel operator

with an extra parameter� We state the resulting bound as a theorem�

Theorem �� If K is a physically realizable local re	ection operator for an envi�

ronment with directional�hemispherical re	ectance bounded away from �� then

kK kp � � ������

for all � � p � �� where � � ��

Proof� See Appendix A����

The �eld radiance operator G is also bounded� but we shall arrive at its norm

in an entirely di�erent manner� To study various properties of this operator and

to compute its norm� we �rst prove three elementary identities� which are collected

in the following lemma�

Lemma � Let f and g be surface radiance functions and let f � g denote their

pointwise product� Then the �eld radiance operator G satis�es

G� f � g � $ �Gf� � �Gg� ������

G f p $ �G f�p ������

G jf j $ jG f j ������

where p is a positive integer and jf j denotes the pointwise absolute value�
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Proof� To prove equation ������� let r � M and u � S� and suppose that

r� $ p�r�u� is de�ned� Then

�G� f � g �� �r�u� $ �f � g��r���u�
$ f�r���u� g�r���u�
$ �Gf�r�u�� �Gg�r�u��

$ �Gf �Gg� �r�u��

When p�r�u� is unde�ned� all of the above functions are zero� so equality holds

trivially� Equation ������ follows by forming powers of f through repeated appli�

cation of equation ������� Finally� equation ������ follows by observing that Gf

preserves every value assumed by the function f � Changing the sign of f at any

point of its domain causes the corresponding sign change at a single point in the

range of Gf � ��

The bound on G can now be obtained using the above lemma and the principle

that radiance remains constant along straight lines in free space� which is applicable

here since we are assuming that there is no participating medium present� The

bound follows immediately from the following theorem�

Theorem �� If G is the �eld radiance operator associated with the manifold M�

then kGf kp � k f kp for all � � p � � and for all surface radiance functions f �

Furthermore� when M forms an enclosure equality holds for all f � and when M
does not form an enclosure� then either kGf kp $ k f kp for some f � or G $ ��

Proof� Let us begin by assuming thatM forms an enclosure� which is synonymous

with G� $ I� Then at any r � M� the complete radiance distribution function

over S� is given by f�r�u� % f�p�r��u��u�� The net �ux through the surface at r
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(a) (b)

G

r

enclosure M

Figure ���	 The net �ux at the point r is a function of �a� the surface radiance and �b�

the �eld radiance constructed using G�

can then be obtained by integrating over S�� givingZ
S�
� f�r�u� % f�p�r��u��u� � d��u� $  �r� � n�r�� ������

But f�p�r�u��u� can be expressed in terms of the G operator� as shown in Fig�

ure ���� Integrating both sides over the entire surfaceM� we haveZ
M

Z
S�
� f�r�u��Gf�r�u� � d��u� dm�r� $

Z
M

 �r� � n�r� dm�r�� ����
�

But by Gauss�s theorem it follows thatZ
M

 �r� � n�r� dm�r� $
Z
V
r � �r� dv�r� $ �� ������

where the �nal equality is a result of equation ������� which states that the light �eld

is solenoidal in empty space� This holds because we have excluded participating

media from the volume V enclosed byM� Thus� from equation ����
� we haveZ
f $

Z
G f ������

for all surface radiance functions f � where the integration is taken to be overM�S�

and with respect to the measure m � �� From equation ������ and lemma � we

have the sequence of equalitiesZ
jf jp $

Z
G jf jp $

Z
�G jf j�p $

Z
jGf jp � ������
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which implies that k f kp $ kGf kp for all f � Thus� G preserves all Lp�norms

whenM forms an enclosure� To show that the result also holds for non�enclosures

we note that removing any part ofM simply reduces the support ofGf � which can

only decrease kGf kp� Consequently� kGf kp remains bounded above by k f kp�
Furthermore� this bound can always be attained by a function f that de�nes a

thin beam from one surface to another� WhenM is convex� no such beams exists

and G $ �� otherwise kGf kp $ k f kp� ��

Theorem �� implies that kG kp $ � for all � � p � �� except when M is

convex� This is a weaker statement� however� which does not subsume the theo�

rem� Given the Lp bounds on K and G� we may now bound the operator M���

which maps surface emission functions to surface radiance functions at equilibrium�

It follows from equation ������ and theorem �� that M�� exists and can be ex�

pressed as a Neumann series �

� p� ���� Taking norms and summing the resulting

geometric series� we have

kM�� kp � � % � % �� % � � � $
�

�� �
������

for all � � p � �� since k �KG�n k � kKG kn � �n� As a direct consequence of

this bound� we have the following theorem�

Theorem �� The space Lp�M�S�� m� �� is closed under global illumination�

Proof� Suppose that f $M��f�� where f� � Lp� Because M
�� is bounded in all

Lp�norms� it follows that k f kp � kM�� kp k f� kp ��� Therefore the equilibrium
solution f is also in Lp� ��
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��� Related Operators

In this section we show that K and G can also be used to de�ne and analyze

other operators that arise in global illumination� In particular� we show that the

adjoint ofM with respect to the natural inner product follows directly from basic

properties of K and G� We also establish the exact relationship between these

operators and a similar operator decomposition proposed by Gershbein et al� �����


���� Adjoint Operators

Adjoint operators have been studied in the context of global illumination for the

purpose of computing solutions over portions of the environment� such as the sur�

faces that are visible from a given vantage point� This application of the adjoint

transport operator has been used in simulating di�use environments by Smits et

al� ����� and in non�di�use environments by Aupperle et al� ����� The approach is

known as importance�driven global illumination�

The problem of computing view�dependent solutions for global illumination is

similar to the ��ux at a point� problems that arise in reactor shielding calculations�

where it is necessary to compute the �ux of neutrons arriving at a small detec�

tor ����� Such problems are solved much more e�ciently using the adjoint transport

equation ��
������ For global illumination� the direct and adjoint solutions can be

used in conjunction by computing them simultaneously� This approach allows

view�dependent solutions to be computed far more e�ciently than either compo�

nent in isolation ������ In this section we consider only the algebraic properties of

adjoint operators and show how they relate to the operators K and G�

Because the adjoint of an operator is most naturally de�ned with respect to

an inner product� we may proceed most easily in the setting of a Hilbert space�

Consequently� we shall restrict our attention to the space L�� since neither the

L��norm nor the L��norm can be de�ned in terms of an inner product� The latter
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fact can be shown very simply by observing that the parallelogram law

k f � g k� % k f % g k� $ �
�
k f k� % k g k�

�
������

holds for all f and g in a normed linear space if and only if the norm k � k is
compatible with an inner product ������ However� equation ������ is violated by

both the L��norm and the L��norm
 for example� this is so when f and g are

disjoint unit step�functions�

Both K and G have a natural symmetry� and they become self�adjoint in L�

if we impose a simple identi�cation� In particular� if K and G are to be identical

with their Hilbert adjoints K� and G�� it is necessary that they be mappings of a

space into itself� Therefore� we must identify surface and �eld radiance functions

so that they may be viewed as the same space�

To establish the required identi�cation� we note that the space of �eld radiance

functions is naturally isomorphic to the space of surface radiance functions� We

denote the obvious isomorphism by H� where

�Hf� �r�u� � f�r��u� ������

is the linear operator that simply reverses the direction associated with each radi�

ance value� From this de�nition it is clear that H maps surface radiance functions

to �eld radiance functions� and vise versa� and that H $ H��� Using this isom�

etry we may formally de�ne new versions of both K and G that have additional

symmetry� Speci�cally� we de�ne

�K � KH�

�G � HG�

Then T � KG $ �K �G� Note that H is an isometric isomorphism with respect to

all Lp�norms
 that is� k f kp $ kPf kp for all p� which implies that k �K kp $ kKkp
for all p� Using the new operators the space of surface radiance functions can be

mapped onto itself without the intermediate space of �eld radiance functions� The
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actions of the various operators are depicted in the simple commutative diagram

shown in Figure ���� By virtue of the isometry H� it is clear that the distinction

between the two types of radiance functions is only super�cial� although it is an

aid to visualizing the physical process� In the context of Hilbert adjoints� however�

we must forgo this distinction so the operators may be de�ned on the same space�

Xs Xf

Xs Xs

K

G

G T

K

Figure ���	 Operators connecting the spaces of surface and �eld radiance functions�

which are denoted by Xs and Xf respectively�

We shall now show that both �K and �G are �symmetric� with respect to the

natural inner product on the space L��M�S�� m� ��� which is given by

hf j gi �
Z
M

Z
S�
f�r�u� g�r�u� d��u� dm�r�� ������

More precisely� we shall show that
D
�Gf

��� gE $ D
f j �Gg

E
and

D
�Kf

��� gE $ D
f j �Kg

E
�

or equivalently� that �K $ �K
�
and �G $ �G

�
� Operators with this property are said

to be self�adjoint� We state and prove the result as a theorem�

Theorem �� The operators �K and �G are self�adjoint in the Hilbert space L��

that is� they are self�adjoint with respect to the inner product h� j �i de�ned in

equation 
������

Proof� That �K is self�adjoint in L� follows from the symmetry of the kernel and
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Fubini�s theorem	

D
f j �Kg

E
$

Z
M

Z
�o

f�r�u�
Z
�o

k�r
u� � u� g�r�u�� d��u�� d��u� dm�r�

$
Z
M

Z
�o

g�r�u��
Z
�o

k�r
u� u�� f�r�u� d��u� d��u�� dm�r�

$
D
�Kf

��� gE �
Therefore �K

�
$ �K for any collection of surfaces M whose re�ectance functions

obey reciprocity� To obtain the corresponding result for �G it is convenient to begin

by assuming thatM forms an enclosure� Using the fact that �G
�
$ I� followed by

equations ������ and ������� we obtain the sequence of equalities

D
�Gf

��� gE $
Z
� �Gf� � g $

Z
� �Gf� � � �G�

g�

$
Z
�G
�
f � �Gg

�
$
Z
f � �Gg $

D
f j �Gg

E
�

Here the integration is once again taken to be overM�S�� as in equation �������

Hence� �G is self�adjoint whenM forms an enclosure� To show that the result holds

for arbitrary M we �rst express the space Lp as a direct sum of two orthogonal

subspaces generated by �G� In particular� we de�ne the sets X� and X� by

X� �
n
f � Lp 	 �G

�
f $ f

o
�

X� �
n
f � Lp 	 �Gf $ �

o
�

It is easy to verify that X� and X� are subspaces of Lp such that Lp $ X� �X��

�G
�
$ �G on X�� and �GX� � X�� Moreover� the functions of X� and X� have

disjoint supports� so X� � X�� Therefore� for all f� g � Lp we haveD
�Gf

��� gE $ D
�Gf�

��� g�E $ D
f� j �Gg�

E
$
D
f j �Gg

E
� ������

where f� and g� denote the X��components of f and g respectively� From equa�

tion ������ we see that �G is self�adjoint on all of Lp� ��
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It follows immediately from the previous theorem and basic properties of adjoint

operators that the adjoint of M is

M� $
�
I� �K �G

��
$ I� �G �K�

Therefore� we have shown that the operators �K and �G su�ce to form bothM and

its adjoint� This is another indication that partitioning of the integral operator in

equation ����� into the operators K and G is an extremely natural one�


���� Operators for Di�use Environments

Gershbein et al� ���� proposed an operator decomposition similar to equation �����

but speci�cally tailored to di�use environments� Their operators were chosen to

exploit the very di�erent behaviors exhibited by irradiance functions and surface

re�ectance functions
 the former are nearly always smooth with respect to position�

whereas the latter may vary rapidly due to high�frequency textures� We show that

these operators are simply related to K and G�

We begin by employing the notation of this chapter to rephrase the two essential

operators used by Gershbein et al�� which we shall denote here by cG and cK� The
operator cG is the irradiance operator� which is de�ned by

�cGb��r� � �

�

Z
�o

b�p�r�u�� d��u�� ������

where b 	 M � IR is a surface radiosity function �watts�m��� and p is the ray

casting function de�ned on page ��
� The factor of ��� results from the conversion

of radiosity to equivalent surface radiance on surrounding surfaces� The operatorcK is the re	ectance operator� which is de�ned by

�cKb��r� � 
�r� b�r�� ����
�

where 
 	M� IR is the surface re�ectivity function
 that is� 
�r� is the constant of

proportionality between irradiance and re�ected radiosity at a point r on a di�use

surface� In analogy with equation ������ the operators cK and cG lead to a governing
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Figure ���	 The operators bK and bG play a role similar to K and G�

equation for global illumination in di�use environments� where the unknown is now

a radiosity function�

To illustrate the connections among K� G� cK� and cG� we de�ne operators
that convert between the corresponding radiometric quantities used in di�use and

non�di�use settings� First� we de�ne the local irradiance operator A by

�Ah��r� �
Z
�i

h�r�u� d��u�� ������

where h is a �eld radiance function� The operator A converts �eld radiance to

irradiance� which is the �rst moment about the surface normal at each point r � M�

Next� to convert between radiosity functions and surface radiance functions we

de�ne a prolongation operator U by

�Ub��r�u� � �

�
b�r�� ������

The operator U elevates a radiosity function to the equivalent radiance function�

which is independent of direction� Using the new operators we may express cG
as AGU in a di�use environment� Similarly� at di�use surfaces the kernel k sat�

is�es k�r
u� � u� � 
�r���� In this case K simply averages over �eld radiance

and produces a direction�independent surface radiance function� It follows that

U��K $ cKA� where U�� denotes the restriction operator that takes a direction�

independent radiance function to the equivalent radiosity function� We are lead to
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the following simple relationship among the operators	

cKcG $ cK �AGU�

$
hcKAiGU

$ U��KGU�

which holds only for entirely di�use environments� The actions of all the operators

are shown in Figure ���� where the dashed arrows indicate transitions in which

information is lost� except in the case of di�use environments�

��� The Rendering Equation

The rendering equation� formulated by Kajiya �
��� is the form in which global

illumination problems are most frequently posed
 we now show that the rendering

equation is equivalent to equation ������ To conveniently express the new equation�

Kajiya introduced a number of multi�point transport quantities that di�er from

standard radiometric quantities �
��� The rendering equation is

bf�r� r�� $ bg�r� r�� � bf��r� r�� % Z
M

bk�r� r�� r��� bf�r�� r��� dm�r���� � ������

where r� r� � M� and the non�standard transport quantities are denoted by hats


the corresponding terminology and physical units are summarized below�

Quantity Name Physical Unitsbf�r� r�� transport intensity watts m��

bf��r� r�� transport emittance watts m��

bk�r� r�� r��� scattering function dimensionless

bg�r� r�� geometry term m��

The geometry term bg in equation ������ is de�ned by
bg�r�� r� �

����� jj r� � r jj�� if r� and r are unoccluded

� otherwise�
������
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Figure ���	 The three points and four angles used in de�ning the multi�point transport

quantities appearing in the rendering equation�

This function encodes point�to�point visibility and is closely related to the ray

casting function p de�ned earlier� The most signi�cant di�erence between equa�

tion ������ and equation ����� is that the former is expressed exclusively in terms

of surface points� whereas the latter uses points and solid angle� The physical

interpretation of equation ������ is that radiant energy �ows from the points r�� on

surrounding surfaces toward the point r�� with some fraction reaching r after scat�

tering� See Figure ���� The rendering equation can be derived from equation ������

or equivalently from equation ������ by a sequence of steps that include a change

of variable� The derivation also leads naturally to the transport quantities�


���� Derivation from the Classical Formulation

Because the rendering equation is expressed in terms of surface points instead of

directions� it is convenient to introduce the converse of the ray casting function�

We de�ne the two�point direction function by

q�r� r�� � r� � r

k r� � r k � ������
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Figure ��
	 The ��form de�ned on the surface M is the pullback of the solid angle

��form� The pullback is de�ned in terms of the two�point direction function� the inverse

of the ray casting function�

At a �xed point r� the functions q and p are inverses of one another� Thus� if we

de�neM� � p�r�"o�� which is the subset ofM visible to the point r� then

q�r�M�� � fq�r� r�� 	 r� � M�g $ "o� ������

Note thatM� is actually a function of r� The two�point direction function is the

key to deriving the rendering equation from the corresponding classical version

f�r��u� $ f��r
��u� %

Z
�i

k�r�
u� � u� f�r���u�� cos ��� d��u��� ������

where the variables appearing in this equation� and in the following discussion� are

depicted in Figure ���� Note that only polar angles will enter into the equation�

as these relate to surface geometry� and therefore to integration over surfaces� All

dependence on the azimuth angles� on the other hand� is hidden within the kernel

function k� which may correspond to an anisotropic BRDF�

Now� letR�r��u� denote the radiance at r� in the direction u due only to re�ected

light� That is�

R�r��u� $
Z
q	r�M�


k�r�
u� � u� f�r���u�� cos ��� d��u���
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where we have used equation ������ to express the domain of integration in terms

of q
 this was done in anticipation of a change of variables� which will express

the integral in terms of the surface M� instead of solid angle� This transition is

equivalent to changing a ��form de�ned on the manifold S� into a ��form de�ned on

the manifoldM�� The formal mechanism for accomplishing this is the pullback ��
�

de�ned by q� which is denoted by q�� Since q 	 M� � S�� the operation q�d�

pulls d� back toM�� where d� is the solid angle ��form� In particular� we have

q� d� $
cos ����

jj r�� � r� jj� dr
��� ������

where dr�� denotes the volume element onM�� which de�nes the measure m by

m�E� $
Z
E
dr��

for all E � M� Equation ������ is a well�known formula for converting from solid

angle to surface integration ���
����� Performing the change of variables� we have

R�r��u� $
Z
M�

k�r�
q�r��� r��� u� f�r���q�r��� r���
cos ��� cos ����

jj r�� � r� jj� dm�r����

But the integral on the right may be expressed in terms of the complete manifold

M by introducing the geometry term� This step can be viewed as constructing the

characteristic function for the set M� in terms of the function bg��� r��� which has
the added bene�t of absorbing the factor of k r�� � r� k��� Thus� we may write

R�r��u� $
Z
M

k�r�
q�r��� r��� u� f�r���q�r��� r��� bg�r��� r�� cos ��� cos ���� dm�r���
$

Z
M

k�r�
q�r��� r��� u� bf�r��� r�� dm�r����
where the last equality follows from the de�nition of the two�point transport in�

tensity function bf � which is given below� Thus� equation ������ may be written
f�r��u� $ f��r

��u� %
Z
M

k�r�
q�r�� r���� u� bf�r��� r�� dm�r���� ������

Since u is a free parameter� it may be expressed in di�erent terms without alter�

ing the rest of the equation� In particular� we may obtain u from r� and a new



���

parameter r � M by means of the two�point direction function� Thus� we have

f�r��q�r�� r�� $ f��r
��q�r�� r�� %

Z
M

k�r�
q�r��� r��� q�r�� r�� bf�r��� r�� dm�r����
which now puts the equation in terms of r and r�� Finally� to obtain the form of

equation ������ we multiply both sides of the equation by bg�r�� r� cos �� cos � and
introduce the multi�point transport quantities� which are summarized below�

Quantity De�ning expressionbf�r� r�� cos �� cos � f�r�q�r� r��� bg�r� r��bf��r� r�� cos �� cos � f��r
��q�r�� r��bk�r� r�� r��� cos �� cos � k �r�
q�r��� r��� q�r�� r��

These quantities correspond to the de�nitions given by Kajiya �
��� but are phrased

here in terms of the two�point direction function q� Note that the multi�point

quantities could be de�ned more symmetrically if the emission term bf� were to
include a factor of bg�r� r��
 this would give both transport emission and transport
intensity the same physical units as well as the same behavior with respect to

occlusion
 that is� both would be zero for occluded paths�


���� Measure�Theoretic De	nition of Transport Intensity

The two�point transport intensity bf�r� r�� is analogous to radiance f�r�u� and can
be de�ned by means of a measure�theoretic argument similar to that given in

chapter �� We give an outline of the argument here�

Let A and B be subsets ofM� and letm denote Lebesgue measure overM� We

then de�ne two natural measures over the product manifoldM�M	 one that is

purely geometrical� and one that characterizes the transfer of radiant energy from

M to itself in steady state� To obtain two�point transport intensity� we de�ne the

geometrical measure to be simply the �completed� product measure m � m� Let

F denote the measure de�ned by the �ow of radiant energy fromM to itself
 that
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is� F is the positive set function that assigns to each set A � B � M�M the

amount of power leaving A and reaching B directly� The positivity and additivity

of the set function F satisfy the axioms of a measure onM�M� The construction

of F is similar to that used for the measure E de�ned in chapter �� but here the
emphasis is on surfaces� and the semantics of energy is present from the start�

Since eitherm�A� $ � orm�B� $ � implies that F�A�B� $ �� the measures are
related by absolute continuity� denoted by F � m�m� This is the only connection
we require between the measures to infer the existence of a density function� By

the Radon�Nikodym theorem� there exists a function bf 	M�M� IR such that

F�A� B� $
Z
A

Z
B

bf�r� r�� dm�r� dm�r��� ����
�

The function bf is the two�point transport intensity� In view of equation ����
��

this quantity also corresponds to the Radon�Nikodym derivative of the measure F
with respect to the product measure m�m� This relationship is denoted by

bf $ dF
d�m�m�

� ������

As in chapter �� the dimensional relationship follows from this� yielding the dimen�

sions of watts�m� for two�point transport intensity�

Equation ������ suggests that we may also de�ne radiance directly from surface

measures� To do so we proceed as above� but with a di�erent geometric measure

overM�M� By replacing the product measure m�m with

F �A� B� �
Z
A

Z
B

cos � cos ��

jj r� r� jj� dm�r� dm�r��� ������

where the angles correspond to those shown in Figure ���� we obtain

f $
dF
dF

� ������

where the density function f now corresponds to radiance� The quantity F �A�B�
can be interpreted as the number of lines passing through both A and B� which is
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an important concept in the study of radiative transfer� In particular� the ratio

F �A� B�

�m�A�
������

is the fraction of all lines passing through A that also meet B� which is precisely

the form factor or con�guration factor �������� from surface A to surface B� Thus�

radiance is the Radon�Nikodym derivative of radiant power with respect line mea�

sure� which is closely related to the area�to�area form factors that appear in both

radiative heat transfer and computer graphics�



Chapter �

Error Analysis for Global

Illumination

In this chapter we identify sources of error in global illumination algorithms and

derive bounds for each distinct category� Errors arise from three sources	 inac�

curacies in the boundary data� discretization� and computation� Boundary data

consist of surface geometry� re�ectance functions� and emission functions� all of

which may be perturbed by errors in measurement or simulation� or by simpli��

cations made for computational e�ciency� Discretization error is introduced by

replacing the continuous radiative transfer equation with a �nite�dimensional lin�

ear system� usually by means of boundary elements and a corresponding projection

method� Finally� computational errors perturb the �nite�dimensional linear system

through roundo� error and imprecise form factors� inner products� visibility� etc��

as well as by halting iterative solvers after a �nite number of steps� Using the

error taxonomy introduced in this chapter we examine existing global illumination

algorithms�

There are many practical questions concerning error in the context of global

illumination� For instance� in simulating a given physical environment� perhaps

under varied lighting conditions� how accurately must the re�ectance functions

���
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be measured* Or� when simulating radiant transfer among di�use surfaces� how

important is it to use higher�order elements* Can we expect higher accuracy by

using analytic area�to�area instead of point�to�area form factors* Finally� how ac�

curate must visibility computations be for global illumination* While the analysis

presented in this chapter cannot provide de�nitive answers to these questions� it

provides a formalism and a starting point for determining quantitative answers�

We shall only consider a well�de�ned class of global illumination problems�

Speci�cally� we address the problem of approximating solutions to a form of the

rendering equation �
�� given imprecise data for geometry� re�ectance functions�

and emission functions� We further assume that the approximation is to be assessed

quantitatively by its distance from the theoretical solution�

Given these restrictions� we derive error bounds in terms of potentially known

quantities� such as bounds on emission and re�ectivity� and bounds on measure�

ment error� To bound the error of a numerical solution using this type of informa�

tion we draw upon the general theory of integral equations ���� as well as the more

abstract theory of operator equations �������

	�� Projection Methods

By far the most common methods for solving global illumination problems are

those employing surface discretizations� which are essentially boundary element

methods ����� In more abstract terms� boundary element methods are themselves

projection methods whose role is to recast in�nite�dimensional problems in �nite

dimensions� In this section we pose the problem of numerical approximation for

global illumination in terms of projections� This level of abstraction will allow us

to clearly identify and categorize all sources of error while avoiding the details of

speci�c implementations�

The idea behind boundary element methods is to construct an approximate so�

lution from a known �nite�dimensional subspace Xn � X� where the discretization
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parameter n typically denotes the dimension of the subspace� For global illumi�

nation the space Xn may consist of n boundary elements over which the radiance

function is constant� Alternatively� it may consist of fewer boundary elements� but

with internal degrees of freedom� such as tensor product polynomials ������ spher�

ical harmonics ������ or wavelets ����� In any case� each element of the function

space Xn is a linear combination of a �nite number of basis functions� u�� � � � � un�

That is�

Xn $ span fu�� � � � � ung � �
���

Given a set of basis functions� we seek an approximation fn from Xn that is �close�

to the exact solution f in some sense� By virtue of the �nite�dimensional space�

�nding fn is equivalent to determining n unknown coe�cients ��� � � � � �n such that

fn $
nX

j��

�juj� �
���

There are many possible methods for selecting such an approximation from Xn�

each motivated by a speci�c notion of closeness and the computational require�

ments of �nding the approximation�

A universal feature of discrete boundary element approaches is that they op�

erate using a �nite amount of �information� gathered from the problem instance�

For projection methods this is done in the following way� We select fn � Xn by

imposing a �nite number of conditions on the residual error� which is de�ned by

rn �M fn � f�� �
���

Speci�cally� we attempt to �nd fn such that rn simultaneously satis�es n linear

constraints� Since we wish to make the residual �small�� we set

�i�rn� $ �� �
���

for i $ �� �� � � � n� where the �i 	 X � IR are linear functionals� The functionals and

basis functions together de�ne a projection operator� as we show in section 
�����
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Any collection of n linearly independent functionals de�nes an approximation fn

by �pinning down� the residual error with su�ciently many constraints to uniquely

determine the coe�cients� However� the choice of functionals has implications for

the quality of the approximation as well as the computation required to obtain it�

Combining equations �
���� �
���� and �
��� we have

�i

��M nX
j��

�juj � f�

�A $ �� �
���

for i $ �� �� � � � � n� which is a system of n equations for the unknown coe�cients

��� � � � � �n� By exploiting the linearity of �i and M� we may express the above

equations in matrix form		




�
��Mu� � � � ��Mun
���

� � �
���

�nMu� � � � �nMun

�




�

	




�
��

���

�n

�




� $
	




�
��f�
���

�nf�

�




� � �
���

As we shall demonstrate below� most global illumination algorithms described in

recent literature are special cases of the formulation in equation �
���� Speci�c

projection�based algorithms are characterized by the following components	

�� A �nite set of basis functions u�� � � � � un

�� A �nite set of linear functionals ��� � � � � �n

�� Algorithms for evaluating �iMuj for i� j $ �� �� � � � � n

�� Algorithms for solving the discrete linear system

These choices do not necessarily coincide with the sequential steps of an algorithm�

Frequently information obtained during evaluation of the linear functionals or dur�

ing the solution of the discrete linear system is used to alter the choice of basis

functions� The essence of adaptive meshing lies in this form of feedback� Regardless

of the order in which the steps are carried out� the approximation generated ulti�

mately rests upon speci�c choices in each of the above categories� Consequently�
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we can determine conservative bounds on the accuracy of the �nal solution by

studying the impact of these choices independently�

	�� A Taxonomy of Errors

In the previous section we characterized the fundamental features that distinguish

projection�based global illumination algorithms� In this section we introduce a

higher�level organization motivated by distinct categories of error
 this subsumes

the previous ideas and adds the notion of imprecise problem instances� Assuming

that accuracy is measured by comparing with the exact solution to equation ������

all sources of error incurred by projection methods fall into one of three categories	


 Perturbed Boundary Data�

Both the operator M and the source term f� may be inexact due to measure�

ment errors and�or simpli�cations made for e�ciency�


 Discretization Error�

The �nite�dimensional space Xn may not include the exact solution� In ad�

dition� satisfying the constraints ��� � � � � �n may not select the best possible

approximation from Xn�


 Computational Errors�

The matrix elements �iMuj may not be computed exactly� thus perturbing

the discrete linear system� Finally� the perturbed linear system may not be

solved exactly�

It is important to note that the above categories are mutually exclusive and ac�

count for all types of errors incurred in solving equation ����� with a projection

method� The conceptual error taxonomy is shown schematically in Figure 
��� In

the remainder of this section we illustrate each of these categories of error with

examples from existing algorithms�
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Figure 
��	 �a� The conceptual stages for computing an approximate solution� �b� The

exact solution at each stage is an approximation for the previous stage� �c� Approxima�

tions speci�c to each stage introduce new errors�

����� Perturbed Boundary Data

The idealized problems that we solve in practice are rarely as realistic as we would

like� As a rule� we settle for solving �near by� problems for several reasons� First�

the data used as input may only be approximate� For instance� re�ectance and

emission functions obtained through simulation ��

� or empirically through mea�

surement of actual materials or light sources ������
�� are inherently contaminated

by error�

A second reason that boundary data may be perturbed is that use of the exact

data may be prohibitively expensive or even impossible� Thus� a surface may be

treated as a smooth Lambertian re�ector for the purpose of simulation� although

the actual geometry and material exhibits directional scattering� Regardless of the

source of the discrepancy� the near�by problem can be viewed as a perturbation of

the original problem�
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����� Discretization Error

To make the problem of global illumination amenable to solution by a digital

computer� we must recast the problem in terms of �nite�dimensional quantities

and �nite processes� This transition is referred to as discretization� In general�

the discrete �nite�dimensional problem cannot entirely capture the behavior of

the in�nite�dimensional problem� and the discrepancy is called discretization er�

ror� This type of error is particularly di�cult to analyze as it inherently involves

in�nite�dimensional spaces and their relationship to �nite�dimensional subspaces�

Consequently� most global illumination algorithms rely upon heuristics rather than

error bounds to perform discretization tasks such as adaptive meshing�

We now look at how two aspects of discretization have been treated in various al�

gorithms	 �� the choice of basis functions� which determines the �nite�dimensional

space containing the approximation� and �� projection� the �nite process by which

the approximation is selected from this space�

Basis Functions

For many global illumination algorithms� the basis functions are completely deter�

mined by the geometry of the boundary elements� This is true of any piecewise�

constant approximation� such as those employed by Goral et al� ����� Cohen et

al������ and Hanrahan et al� ����� Often a smoothing step is applied to piecewise�

constant approximations for display purposes� although this does not necessarily

improve the accuracy of the approximation� When non�constant elements are em�

ployed� such as tensor product polynomials ��������� or wavelets ����� the degrees

of freedom of the elements add to the dimension of the approximating subspace�

For non�di�use environments the �nite�dimensional space must also account

for the directional dependence of surface radiance functions
 several avenues have

been explored for doing this� Immel et al� �
�� used subdivided cubes centered

at a �nite number of surface points to simultaneously discretize directions and
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positions� Sillion et al� ����� used a truncated series of spherical harmonics to

capture directional dependence and a quadrilateral mesh of surface elements for

the spatial dependence� As a third contrasting approach� Aupperle et al� ����

used piecewise�constant functions de�ned over pairs of patches to account for both

directional and spatial variations�

The accuracy of the approximation is limited by the space of basis functions


in general� the exact solution cannot be formed by a �nite linear combination of

polynomials or other basis functions� The error can be reduced either by expanding

the subspace Xn� or by selecting basis functions that �t the solution more closely�

Discontinuity meshing ������� is an example of the latter strategy�

Projections

Given a set of basis functions� the next conceptual step is to construct an ap�

proximation of the exact solution from it� We now demonstrate how the major

projection methods follow from speci�c choices of the linear functionals ��� � � � � �n

described in section 
��� The �rst technique is collocation ����� which follows by

de�ning �i to be an evaluation functional at the ith collocation point
 that is

�ih � h�xi�� �
�
�

where x�� � � � � xn are distinct points in the domain of the radiance functions chosen

so that det�ui�xj�� �$ �� Given these functionals� the ijth element of the matrix on
the left of equation �
��� has the form

uj�xi�� �KGuj��xi�� �
���

Collocation has been widely used in global illumination because of the relative

simplicity of evaluating expressions of this form� In the case of constant basis

functions over planar boundary elements� the resulting matrix has a unit diagonal

with point�to�area form factors o� the diagonal� which is a widely used radiosity
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formulation ����� In general� methods based on a �nite number of point�to�area

interactions are collocation methods�

A second technique is the Galerkin method� which follows by de�ning �i to be

an inner product functional with the ith basis function
 that is

�ih � hui j hi � �
���

where the inner product h� j �i denotes the integral of the product of two functions�
The ijth element of the resulting linear system has the form

hui j uji � hui j KGuji � �
����

The Galerkin method was �rst employed in global illumination by Goral et al� ����

using a uniform mesh and constant basis functions� The use of higher�order basis

functions was investigated by Heckbert ���� and later by Zatz ����� and Troutman

and Max ������ For di�use environments with constant elements� the second inner

product in equation �
���� reduces to an area�to�area form factor�

There are other possibilities for the linear functionals ��� � � � � �n� For instance�

the inner products in equation �
��� may be taken with respect to a di�erent set

of basis functions� If we set

�ih � hMui j hi � �
����

we obtain the least squares method� With the above functional� the solution to

the linear system in equation �
��� has a residual error that is orthogonal to the

space Xn� which minimizes the residual error with respect to the L��norm� How�

ever� the matrix elements for the least squares method include terms of the form

hKGui j KGuji� which are formidable to evaluate even with trivial basis func�
tions ����� As a result� there are currently no practical global illumination algo�

rithms based on the least squares method�
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����� Computational Errors

Given a particular method of discretization� error may be incurred in constructing

the discrete ��nite�dimensional� linear system� and once formulated� we may fail to

solve even the discrete problem exactly� These facts illustrate a third distinct class

of errors� Because these errors arise from the practical limits of computational

procedures� this class is called computational errors ����� Computational errors

perturb the discrete problem� and then preclude exact solution of the perturbed

problem� We now look at examples of each of these�

Perturbation of the Linear System

The most computationally expensive operation of global illumination is the eval�

uation of the matrix elements in equation �
���
 this is true even of algorithms

that do not store an explicit matrix ����� Furthermore� only in very special cases

can the matrix elements be formed exactly� as they entail visibility calculations

coupled with multiple integration� Consequently� the computed matrix is nearly

always perturbed by computational errors�

A common example of an error in this category is imprecise form factors� The

algorithm introduced by Cohen and Greenberg ���� for di�use environments com�

puted form factors at discrete surface points by means of a hemicube� which intro�

duced a number of errors speci�c to this approach ����� Errors are also introduced

when form factors are approximated through ray tracing ��
�� or by using sim�

pler geometries ����� These errors can be mitigated to some extent by the use of

analytic form factors ��������� yet there remain many cases for which no analytic

expression is known� particularly in the presence of occluders�

For non�constant basis functions the form factor computations are replaced by

more general inner products� which require di�erent approximations� For instance�

the matrix elements in the Galerkin approach of Zatz ����� required four�fold inte�

grals� which were approximated using Gaussian quadrature� Non�di�use environ�
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ments pose a similar di�culty in that the matrix elements entail integration with

re�ectance functions ������

Another form of matrix perturbation arises from simpli�cations made for the

sake of e�ciency� For example� small entries may be set to zero ����� or the entire

matrix may be approximated by one with a more e�cient structure� such as a block

matrix ���� or a wavelet decomposition �����

Inexact Solution of the Linear System

Once the discrete linear system is formed� we must solve for the coe�cients

��� � � � � �n� This has been done in a number of ways� including Gaussian elimi�

nation ����� Gauss�Seidel ����� Southwell relaxation �������� which is also known

as shooting� and Jacobi iteration ����� In any such method� there will be some

error introduced in the solution process	 direct solvers like Gaussian elimination

are prone to roundo� error� whereas iterative solvers like Gauss�Seidel must halt

after a �nite number of iterations�

In approaches where the matrix is constructed in advance� such as �full matrix�

radiosity ���� or hierarchical radiosity ����� the iterative solution can be carried out

to essentially full convergence� Other approaches� such as progressive radiosity �����

construct matrix elements on the �y and then discard them� The cost of computing

these elements generally precludes complete convergence� making this source of

error signi�cant�

	�� Error Bounds

With the results of the previous section we can obtain bounds for each category

of error� However� because the methods employed here take account of very little

information about an environment� the bounds tend to be quite conservative� We

now examine each source of error shown in Figure 
���
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����� Bounding Errors Due to Perturbed Boundary Data

We solve global illumination problems using inexact or noisy data in hopes of

obtaining a solution that is close to that of the original problem� But under

what circumstances is this a reasonable expectation* To answer this question we

analyze the mapping from problem instances �M�K� f�� to solutions f � We shall

assume that any input to a global illumination problem may be contaminated by

error� and determine the impact of these errors on the solution� We shall show

that the problem of global illumination is well�posed in all physically realizable

environments
 that is� �small� perturbations of the input data produce �small�

errors in the solution in physically meaningful problems�

To bound the e�ects of input data perturbations� we examine the quantity

jj f � � f jj� where f � is the solution to the exact or unperturbed system� and f is

the solution to the perturbed system

fM f $ ff�� �
����

where perturbed entities are denoted with tildes�

Perturbed Re�ectance and Emission Functions

We �rst investigate the e�ect of perturbing the re�ectance and emission functions�

The former is equivalent to perturbing the local re�ection operator K� Consider a

perturbed operator fK and a perturbed emission function ff� such that���K� fK ��� � �k �
����

and ������ f� � ff� ������ � �g� �
����

Since jjG jj $ �� and G is assumed to be exact� it follows that inequality �
����

also applies to the corresponding perturbed M operator	��� fM�M
��� $ ���KG� fKG ��� � ���K� fK ��� jjG jj � �k�
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Intuitively� the above inequality holds because the worst�case behavior over all

possible �eld radiance functions is una�ected by G� which merely redistributes

radiance�

To bound the error jj f � � f jj due to perturbations in the re�ection and emis�
sion functions according to the inequalities �
���� and �
���� we write

jj f � � f jj $
���M��f� � fM��ff� ���

�
���M�� � fM��

��� ������ ff� ������% ���M��
��� ������ f� � ff� ������ �

From inequalities ������� ������ and �
����� we have

���M�� � fM��
��� � �

�k
�� � � �k

��
�

�� �

�
� �
����

Combining the above and noting that
������ ff� ������ � jj f� jj% �g by inequality �
����� we

arrive at the bound

jj f � � f jj �
�

�k
�� � � �k

�� jj f� jj% �g
�� �

�
%

�g
�� �

� �
����

which contains terms accounting for perturbations in the re�ectance and emission

functions individually as well as a second�order term involving �k�g� Note that the

re�ectance term requires �k � �� �� indicating that the problem may become less

stable as the maximum re�ectivity approaches �� For highly re�ective environ�

ments� the results may be arbitrarily bad if the input data are not correspondingly

accurate� In general� the worst�case absolute error in f depends upon the maxi�

mum re�ectivity of the environment �� the perturbation of the re�ection functions

�k� and the error in the emission function� �g�

Perturbed Surface Geometry

The e�ects of imprecise surface geometry are more di�cult to analyze than those

due to imprecise re�ection or emission� While the space of radiance functions has a

linear algebraic structure that underlies all of the analysis� no analogous structure
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exists on the set of possible surface geometries� The analysis must therefore proceed

along di�erent lines�

One possible alternative is to study imprecise surface geometry indirectly� by

means of theG operator� That is� we can express the e�ect of surface perturbations

on the �eld radiance at each point as a perturbation of G� Given a perturbed

operator fG� and a bound on its distance from the exact G� the same analysis used

for perturbed re�ectance functions can be applied� Such an approach may be useful

for analyzing schemes in which geometry is simpli�ed to improve the e�ciency of

global illumination� such as the algorithm proposed by Rushmeier et al� ������

However� relating changes in geometry to bounds on the perturbation of G is an

open problem� and solutions to this problem are likely to be norm�dependent�

����� Bounding Discretization Error

In this section we study discretization errors introduced by projection methods�

Clearly� the discretization error jj f � fn jj is bounded from below by dist� f�Xn��

the distance to the best approximation attainable within the space Xn� To obtain

an upper bound� we express equation �
��� using an explicit projection operator	

Pnrn $ �� �
��
�

where � represents the zero function� and Pn is the projection operator corre�

sponding to the subspace Xn� That is� Pn is a linear operator with P
�
n $ Pn and

Pnh $ h for all h � Xn� Such a projection can be de�ned in terms of the basis

functions u�� � � � � un and the linear functionals ��� � � � � �n described in section 
���

The form of Pn is particularly simple when

�i�uj� $ �ij� �
����

which is commonly the case� For instance� this condition is met whenever there is

exactly one collocation point within the support of each basis function� or when or�

thogonal polynomials are used in a Galerkin�based approach� When equation �
����



�



holds� the projection operator Pn is given by

Pnh $
nX
i��

�i�h�ui �
����

for any function h � X ����� It is easy to see that equation �
���� de�nes a

projection onto Xn� and that Pnh $ � if and only if �i�h� $ � for i $ �� �� � � � n


that is� equation �
��
� is a valid replacement for equation �
���� To produce the

desired bound� we write equation �
��
� as

PnM� f � fn� $ �� �
����

then isolate the quantity jj f � fn jj� Adding �I � Pn��f � fn� to both sides of

equation �
���� and simplifying� using the fact that �I�Pn�fn $ �� we arrive at

�I�PnKG� �f � fn� $ �I�Pn�f� �
����

When the operator on the left of equation �
���� is invertible� we obtain the bound

jj f � fn jj �
������ �I�PnKG�

��
������ jj f �Pnf jj � �
����

A more meaningful bound can be obtained by simplifying both factors on the right

hand side of the above equation ������ Since I�PnKG is an approximation of the

operator M� let �P be such that

jjM� �I�PnKG� jj � �P � �
����

which simpli�es to

jjK�PnK jj � �P � �
����

Because M is invertible� so is I � PnKG when �P is su�ciently small� Banach�s

lemma then provides the bound

������ �I�PnKG�
��
������ � �

�� � � �P
�
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The second norm on the right of inequality �
���� can be simpli�ed as follows� Let

h � Xn� Noting that Pnh $ h� we have

jj f �Pnf jj $ jj �f � h� % �h�Pnf� jj
� jj f � h jj% jjPn�h� f� jj
� �� % jjPn jj� jj f � h jj �

Since h � Xn was chosen arbitrarily� the inequality holds for the greatest lower

bound over Xn� which results in the bound

jj f �Pnf jj � �� % jjPn jj� dist�f�Xn��

From the above inequalities we obtain the upper and lower bounds

dist� f�Xn� � jj f � fn jj �
�
dist� f�Xn�

�� � � �P

�
�� % jjPn jj� � �
����

where the constant �P is such that

jjK�PnK jj � �P � �
����

The bounds in equation �
���� depend on both the subspace Xn and the projection

method� Note that if f is in the space Xn� then dist� f�Xn� $ �� and the upper

bound implies that fn $ f � Thus� all projection methods �nd the exact solution

when it is achievable with a linear combination of the given basis functions� On

the other hand� when dist� f�Xn� is large� then the lower bound implies that the

approximation will be poor even when all other steps are exact� Unfortunately�

this distance is di�cult to estimate a priori� as it depends on the actual solution�

The dependence on the type of projection appears in the factor of � % jjPn jj
and in the constant �P � For all projections based on inner products� jjPn jj $ �

when the basis functions are orthogonal ���� p� ���� For other methods� such

as collocation� the norm of the projection may be greater than one ���� p� ����

The meaning of the constant �P is more subtle� The norm in equation �
���� is a

measure of how well the projection Pn captures features of the re�ected radiance�
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����� Bounding Computational Errors

The e�ects of computational errors can be estimated by treating them as per�

turbations of the discrete linear system� The analysis therefore parallels that of

perturbed boundary data� although it is carried out in a �nite dimensional space�

We shall denote the linear system in equation �
��� by A� $ b� In general� the ma�

trix elements as well as the vector b will be inexact due to errors or simpli�cations�

We denote the perturbed system and its solution by

fA e� $ eb� �
��
�

Although the exact matrix is unknown� it is frequently possible to bound the error

present in each element� For instance� this can be done for approximate form

factors and block matrix approximations �����

Given element�by�element error bounds� the impact on the �nal solution can

be bounded� From the element perturbations we can �nd �A and �b such that��� A�fA ��� � �A� �
����

and

��� b� eb ��� � �b� �
����

for some vector norm and the matrix norm it induces� Also� since the perturbed

matrix is known� the norm of its inverse can be estimated	

��� fA��
��� � �� �
����

With the three bounds described above� essentially the same steps used in bounding

the e�ects of perturbed boundary data can be applied here and yield the bound

jj�� e� jj � �
�A�

�

�� �A�

����� eb ��� % �b
�
% ��b� �
����

The form of this bound is somewhat di�erent for relative errors� which are more

conveniently expressed in terms of condition numbers ����� p� ����
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Computing values for �A and �b that are reasonably tight is almost always

di�cult� requiring error bounds for each step in forming the matrix elements� There

is no universal method by which this can be done
 each approach to estimating

visibility or computing inner products� for example� requires a specialized analysis�

In contrast� the bound in equation �
���� is more accessible� as it is purely a

problem of linear algebra�

Given that equation �
��
� generally cannot be solved exactly� the solution

process is yet another source of error� The result is an approximation of e�� which
we denote by ee�� This last source of error is bounded by

��� e�� ee� ��� � �
��� fA ee�� eb ��� � �
����

When fA and eb are stored explicitly� the above expression can be used as the

stopping criterion for an iterative solver�

To relate errors in the coe�cients ��� � � � � �n to errors in the resulting radiance

function� consider the mapping T 	 IRn � Xn where

Tx �
nX

j��

xj uj� �
����

As a �nite�dimensional linear operator� T is necessarily bounded
 its norm supplies

the connection between coe�cients in IRn and functions in Xn� Observe that

��� fn � eef ��� $
��� T��Tee� ���

� jjT jj
��� �� ee� ���

� jjT jj
���� �� e� ��� % ��� e�� ee� ���� � �
����

Equation �
���� relates the computational error present in the �nal solution to

inequalities �
���� and �
����� The value of jjT jj will depend on the basis functions
u�� � � � � un and the choice of norms for both IR

n and Xn� which need not be related�
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	�� The Combined E�ect of Errors

In the previous sections we derived inequalities to bound the errors introduced into

the solution of a global illumination problem� Using these inequalities we can now

bound the distance between the exact solution and the computed solution� By the

triangle inequality we have

��� f � � eef ��� � ��� f � � f
��� % ��� f � fn

��� % ��� fn � eef ��� � �
����

which is the numerical analogue of the chain of approximations shown in Figure 
���

The terms on the right correspond to errors arising from perturbed boundary data�

discretization� and computation
 sections 
����� 
����� and 
���� provide bounds for

each of these errors� The �rst and third terms can be reduced in magnitude by

decreasing errors in the emission and re�ectance functions and in the computational

methods for forming and solving the linear system�



Chapter �

Conclusions


�� Summary

Chapter � presented a measure�theoretic development of phase space density� the

abstract counterpart of radiance� The approach identi�ed the physical and math�

ematical principles upon which radiance is based� and provided a simple proof of

the constancy of radiance along rays in free space�

Chapter � presented a closed�form expression for the irradiance Jacobian due

to polygonal sources of uniform brightness in the presence of arbitrary polygonal

blockers� The expression can be evaluated in much the same way as Lambert�s

formula for irradiance� When blockers are present� a minor extension of standard

polygon clipping is required� Several applications that make use of the irradiance

Jacobian were demonstrated� including the direct computation of isolux contours

and local irradiance extrema� both in the presence of polygonal occluders�

Chapter � presented a number of new closed�form expressions for computing

illumination from luminaires �area light sources� with directional distributions as

well as re�ections from and transmissions through surfaces with a wide range of

non�di�use �nishes� The expressions can be evaluated e�ciently for arbitrary non�

convex polygons in O�nk� time� where n is related to the directionality of the

luminaire or glossiness of the surface� and k is the number of edges in the polygon�

���
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These are the �rst such expressions available�

The new expressions were derived using a proposed generalization of radiance

called irradiance tensors� These tensors were shown to satisfy a simple recurrence

relation that generalizes Lambert�s well�known formula
 expressions for axial mo�

ments and double�axis moments of polygonal luminaires were derived directly from

this recurrence relation� The latter quantities have direct applications in simulat�

ing non�di�use phenomena whose distributions are de�ned in terms of moments�

The formulas give rise to e�cient and easily implemented algorithms� The new al�

gorithms were veri�ed by means of Monte Carlo in chapter �� where a new method

was derived for generating strati�ed samples over spherical triangles�

Chapter � introduced a new operator equation describing the transfer of

monochromatic radiant energy among opaque surfaces� The new formulation is

appropriate for global illumination and has several theoretical advantages over

previous formulations� First� it is based on standard radiometric concepts� which

allows for the direct application of thermodynamic constraints� Secondly� it is

well�suited to the a priori error analysis presented in this thesis�

Chapter 
 identi�ed three sources of error in global illumination algorithms	

inaccuracies in the input data� discretization� and computational errors� Input

errors result from noise in measurement or simulation� or from simpli�cations�

Discretization errors result from restricting the space of possible approximations

and from the method of selecting the approximation� Computational errors form

a large class that includes imprecise form factors and visibility� as well as errors

introduced by block matrix approximations and iterative matrix methods� To

produce a reliable solution� each of these sources of error must be accounted for�

Using standard methods of analysis� we have derived worst�case bounds for each

category based on properties of the new operators�
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�� Future Work

The techniques of chapter � can be applied to other problems and extended� For

instance� the expression for the irradiance Jacobian can be applied to geometric

optimization problems involving illumination
 that is� in selecting optimal shape

parameters for luminaires and blockers with respect to some lighting objective

function� The bene�t of analytic Jacobians over �nite di�erence approximations

increases with the number of parameters� Also� the algorithms that incorporate

irradiance gradients can be extended to apply to non�di�use luminaires by means

of the expression for double axis moments given in chapter ��

There are a number of natural extensions to the work presented in chapter ��

Given axial moments with respect to two or more axes� all of arbitrary orders� it

is possible to combine the e�ects demonstrated in the chapter� For example� it

would be possible to compute glossy re�ections of directional luminaires� Another

application would be the simulation of non�di�use surfaces illuminated by skylight

using the polynomial approximation of a skylight distribution proposed by Nimro�

et al� ������ According to equation ������� all moments of this form admit closed�

form expressions
 however� practical algorithms for their evaluation do not yet

exist� Another important extension is to accommodate more general polynomial

functions over the sphere
 in particular� polynomial approximations of realistic

BRDFs obtained from theory ����� or measurement ��
���

The analysis of chapter 
 would be more practical if it were based on more

detailed information about environments
 constants such as maximum re�ectivity

are much too coarse to obtain tight bounds� A de�ciency of the Lp function norms

employed in the chapter is that they do not adequately handle the wave optics e�ect

of specular re�ection at grazing angles� Other norms should be explored� including

those that are in some sense perceptually�based� Finally� reliable bounds are needed

for a wide assortment of standard computations� such as form factors between

partially occluded surfaces and inner products involving higher�order elements�



Appendix A

Additional Proofs and Derivations

A�� Proof of theorem �

To prove theorem � on page �
� we �rst impose a parametrization on S� by means

of the standard coordinate charts

x��� �� $ sin � cos ��

y��� �� $ sin � sin��

z��� �� $ cos ��

which map ��� ��� ��� ��� onto S�� Then d� $ sin � d� d�� and

	�i� j� k� $
�

��

�Z ��

�
cosi � sinj � d�

� �Z �

�
cosk � sini�j�� � d�

�
� �A���

To simplify this expression� we introduce the function p�i� j� de�ned by

p�i� j� �
Z ���

�
cosi � sinj � d�� �A���

which is positive for all i and j� and the function e�i�� de�ned by

e�i� �
����� � if i is even

� otherwise�
�A���

���
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We now employ symmetries of sine and cosine to simplify the integrals on the

right hand side of equation �A���� First� because sine is an odd function� we have

sin � $ � sin�� % ��� It follows that

Z ��

�
cosi � sinj � d� $ � e�j�

Z �

�
cosi � sinj � d��

Similarly� cosine is odd� so cos � $ � cos�� � ��� It follows that

Z �

�
cosi � sinj � d� $ � e�i�

Z ���

�
cosi � sinj � d��

By means of these reductions� both factors on the right hand side of equation �A���

may be expressed in terms of the function p�i� j�� yielding

	�i� j� k� $
�

�
e�i� e�j� e�k� p�i� j� p�k� i% j % ��� �A���

The right hand side of equation �A��� is clearly zero if and only if at least one of

i� j� or k is odd� ��
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A�� Proof of theorem 	

In this appendix we supply the proof of theorem 
 on page �
� which gives a

closed�form expression for 	�i� j� k�� We �rst state and prove two useful lemmas�

Lemma � If i and j are non�negative integers� then

p�i % �� j� $
i% �

i% j % �
p�i� j� �A���

p�i� j % �� $
j % �

i% j % �
p�i� j�� �A���

where the function p�i� j� is de�ned by equation 
A��� on page ����

Proof� Integrating p�i% �� j� by parts� we have

p�i% �� j� $ �
Z ���

�

h
j cos�� � �i% �� sin��

i
cosi� sinj� d�

$
Z ���

�

h
i% �� �i% j % �� cos��

i
cosi� sinj� d�

$ �i% �� p�i� j� � �i% j % �� p�i% �� j��

Thus� �i % j % �� p�i % �� j� $ �i % �� p�i� j�� which veri�es equation �A���� Equa�

tion �A��� follows in precisely the same manner� ��

Lemma � If i� j� and k are non�negative integers� and n $ i % j % k� then

	�i% �� j� k� $
i% �

n% �
	�i� j� k�� �A�
�

and the analogous result also holds for the second and third arguments�
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Proof� Equation �A�
� clearly holds when any of i� j� or k are odd� as both sides

are then zero� When i� j� and k are all even� it follows from equation �A��� that

	�i� j� k� $
�

�
p�i� j� p�k� i % j % ��� �A���

From equation �A��� and recurrence relations �A��� and �A���� we have

	�i% �� j� k� $
�

�
p�i% �� j� p�k� i% j % ��

$
�

�

�
i% �

i% j % �
p�i� j�

� �
i% j % �

i% j % k % �
p�k� i% j % ��

�

$
i % �

n% �
	�i� j� k�� �A���

which proves the lemma� ��

The proof of theorem 
 follows easily from lemma �� We start by deriving an

expression for 	�i� j� k� in terms of double factorials� Assuming that i� j� and k are

all even integers� repeated application of recurrence relation �A�
� gives

	�i� j� k� $
i� �
n% �

	�i� �� j� k�

$
�i� ���i� �� � � ��

�n% ���n� �� � � � �j % k % ��
	��� j� k�

$
� �i� ���i� �� � � �� � � �j � ���j � �� � � �� � � �k � ���k � �� � � � � �

�n% ���n� ���n� �� � � ��

$
�i� ��## �j � ��## �k � ��##

�n % ��##
�

which proves the �rst part of the theorem� The alternate expression for 	�i� j� k��

based on multinomial coe�cients� can now be derived using the two identities

n# $ n## �n� ��##

��n�## $ n# �n�



���

which follow immediately from the de�nition of the double factorial� Thus�

�i� ��## �j � ��## �k � ��##
�n% ��##

$
�

n % �

�
n##

n#

��
i#

i##

��
j#

j##

��
k#

k##

�

$
�

n % �

�
�n���#

�i���# �j���# �k���#

� �
i# j# k#

n#

�

$
�

n % �

��
i�

n�

j � k�

�A��
i

n

j k

�
�

where the primes indicate division by two� This proves the second part of the

theorem� ��



���

A�� Proof of theorem 


In this appendix we provide the proof of theorem � on page 

�

Consider a single element of the n�tensor 	n corresponding to a given multi�

index I $ �i�� ���� in�� and let �i� j� k� $ �
�I � 

�
I � 


�
I �� When n is odd� it follows from

theorem � that 	n
I $ �� since at least one of i� j� or k is odd
 this veri�es the �rst

part of the theorem� Now� suppose that n is even and consider the summation on

the right of equation ������� If any of i� j� or k are odd� then at least one ��function

in each term will have non�matching indices� making 	n
I $ � as required� When

i� j� and k are all even� the only terms in the sum that are non�zero are those

in which the permutation �j�� � � � � jn� forms a sequence of matching pairs
 that is�

j�m�� $ j�m for m $ �� �� � � � � n��� To count the number of times this occurs for

the given index I� observe that there are��
i�

n�

j � k�

�A �A����

distinct arrangements of the n� � n�� matching pairs� and each of these arrange�

ments occurs with a multiplicity of i# j# k# within the set of all n# permutations of

�i�� � � � � in�� Therefore

	n
I $

i# j# k#

�n% ��#

��
i�

n�

j � k�

�A

$
�

�

n% �

� ��
i�

n�

j � k�

�A��
i

n

j k

�

$ 	�i� j� k�� �A����

which proves the theorem� ��



���

A�� Proof that xiyjzk d� is closed

We show that the ��form xiyjzk d� is closed� where x� y� and z are the direction

cosines� and d� is the solid angle ��form de�ned on page 
�� We shall show that

d

�
xiyjzk

rn
d�

�
$ �� �A����

where r � px� % y� % z� and n � i%j%k� The computation is purely mechanical�

By the de�nition of d� we have

xiyjzk

rn
d� $

xi��yjzk dy 	 dz % xiyj��zk dz 	 dx % xiyjzk�� dx 	 dy

rn��
�

In computing the di�erential of the expression on the right� two thirds of the terms

vanish since the wedge product of a ��form with itself is zero� For example� the

expression d�xi�� yj zk dy 	 dz� results in only one non�zero term
 the partial with

respect to x� Performing all such simpli�cations� we have

d

�
xiyjzk

rn
d�

�
$

�i% �� % �j % �� % �k % ��

rn��
xi yj zk dx 	 dy 	 dz

� �n% ��x
� % y� % z�

rn��
xi yj zk dx 	 dy 	 dz

$ ��

Thus� the initial ��form is closed for all exponents i� j� and k� ��



���

A�� Proof of lemma �

In this appendix we derive the recurrence relation presented as lemma � on page

���� To begin� we write

Fn �
Z
�a% b cos ��n d� $ aFn�� % b

Z
�a% b cos ��n�� cos � d��

Integrating the �nal term by parts� we have

Fn $ aFn�� % b �a% b cos ��n�� sin � % �n� �� b�
Z
�a% b cos ��n�� sin�� d��

Next� we express b� sin�� in terms of �a % b cos ��� resulting in

b� sin�� $ �b % b cos ���b � b cos ��

$ � �b� a� % �a% b cos �� �� � �b % a�� �a % b cos �� � �

Substituting the above into the expression for Fn� we have

Fn $ aFn�� % b �a % b cos ��n�� sin �

% �n� ��
Z h
��a% b cos ��n % �a�a% b cos ��n�� % �b� � a���a% b cos ��n��

i
d�

$ aFn�� % b �a % b cos ��n�� sin �

% �n� ��
h
�Fn % �aFn�� % �b� � a��Fn��

i
�

Simplifying� we arrive at

nFn $ a��n� ��Fn�� % �n� ���b� � a��Fn�� % �a% cos ��n�� sin ��

with the base cases n $ � and n $ � following immediately from the de�nition of

Fn� which proves the lemma� ��



���

A�� Proof of theorem ��

In this appendix we provide the proof of theorem �� on page ���� The steps of the

proof are identical to those used in the proof of theorem ��� with a crucial di�erence

appearing in the formulation of equation ������� To account for the introduction

of the w � u expression in the denominator� we de�ne

An�q �
�

r

r �w
�q
An� �A����

where An is the nth�order tensor de�ned in equation ������� We then proceed in

the same fashion as before� but with the new n�tensor An�q� First� we compute the

partials of An�q� Di�erentiating the product� we have

An�q
J�m $

�

� rm

�
r

r �w
�q
An

J %
�

r

r �w
�q
An

J�m� �A����

where J is an n�index� As in equation ������� we compute the product of �kml with

An�q
J�m
 for clarity� we perform this step for each of the two terms on the right of

equation �A���� individually� Let I denote an �n� ���index� Using the expression
for An given in equation ������� we have

�kml

�

� rm

�
r

r �w
�q

An
Ijl $

�
q rq��

�r �w�q��
� h
r�wm � rm�r �w�

i
�kmlA

n
Ijl

$

�
q rn��

I
rp

�r �w�q��
� �
rm�r �w�� r�wm

�n % ��rn���q

� �
�pk�jm � �pm�jk

�
$

�
q rn��

I
rk

�r �w�q��
� �
rj�r �w�� r�wj

�n % ��rn���q

�

$
q

n % �

�
rn��
I

rj
�r �w�q rn�q �

rn��
I

wj

�r �w�q�� rn���q
� �

rk
r�

�
�

Next� we consider the second term on the right of equation �A����� Multiplying by

�kml and simplifying� we have

�kml

�
r

r �w
�q

An
Ijl�m $

�
r

r �w
�q 	��i�j rn��I��

% � � � �i�j rn��I��
%

rn��
� rn��

I
rj

rn��

�� rk
$

	�
�
�i�j r

n��
I��

% �i�j r
n��
I��

% � � �
�
r� � �n% �� rn��

I
rj

�r �w�q �n % �� rn�q
���rk

r�

�
�
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Note that both of the �nal expressions above include a factor of rk�r
�
 this factor

will be used to complete the ��form corresponding to d�� thereby converting the

surface integral to an integral over solid angle� Thus� we have

Z
�A
An�q

Ijl drl $
Z
�A
An�q

Ijl�m drm 	 drl

$
q

n % �

h
Tn�q

Ij � wj T
n���q��
I

i
�Tn�q

Ij %
�

n % �

n��X
k��

�IkjT
n���q
I�k �

Simplifying and rearranging terms� we obtain

Tn�q
Ij $

�

n % �� q

�
n��X
k��

�IkjT
n���q
I�k � qwj T

n���q��
I �

Z
�A

un��
I

nj
�u �w�q ds

�
�

which proves the theorem� ��



���

A�	 Reducing � to Known Special Functions

We show that the special function ��a� x� de�ned on page ��� can be expressed

in terms of the well�known dilogarithm function� denoted by Li��z� and de�ned

over the complex plane� We shall make use of two intermediate functions	

Lobachevsky�s function ���� p� ����� de�ned by

L�x� �
Z x

�
log�cos �� d�� �A����

and a two�parameter generalization of this function� denoted by M � where

M��� x� �
Z x

�
log�cos � % cos�� d�� �A����

Both of these integrals can be expressed in terms of the dilogarithm function�

Gr'obner and Hofreiter ���� vol� II� pp� ��)
�� provide the following essential

formulas	

L�x� $
i

�
Li�

�
ei	�x��


�
� x log �� i

�

�
x� � ��

��

�
� �A��
�

M��� x� $ i Li�
�
ei	��x��


�
� i Li�

�
ei	��x��


�
� x�log � % i��� �A����

where the parameter � may be an arbitrary complex number� Since a variety of

distinct de�nitions of the dilogarithm have appeared in the literature ���������� we

note that here Li��z� is given by the series

Li��z� �
�X
n��

zn

n�
� �A����

for all complex z such that jzj � �� An alternate de�nition of the dilogarithm is

given by the integral

Li��z� � �
Z z

�

log��� t�

t
dt� �A����

which is equivalent to the series on the unit disk� but extends the de�nition to the

entire complex plane ����� Only elementary identities are needed to express ��a� x�
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Figure A��	 Clausen
s integral over the domain ��� ����

in terms of the functions L and M above� The reduction proceeds as follows	

��a� x� �
Z x

�
log

�
� %

a�

cos� �

�
d�

$
Z x

�
log

�
cos� � % a�

�
d� �

Z x

�
log

�
cos� �

�
d�

$
�

�

Z �x

�
log

�
cos � % �a� % �

�

�
d� � �

Z x

�
log�cos �� d�

$
�

�
M� i cosh����a� % ��� �x� � x log � � � L�x�� �A����

where the last step follows from the fact that cos�ix� $ cosh x for any real number

x� A disadvantage of this formulation is that it involves dilogarithms with complex

arguments� which requires a two�parameter special function ���� p� ����� Further�

more� the arguments have modulus greater than one� which precludes the use of

the power series in equation �A����� An alternative is to express ��a� x� in terms

of the Clausen integral� denoted by Cl���� and de�ned by

Cl��x� � �
Z x

�
log

�
� sin

�

�

�
d� $

�X
n��

sinnx

x�
� �A����

Here it is the series representation that is de�ned over the entire complex plane�

From the series it is clear that the function is a cyclic� with Cl��x%�n�� $ Cl��x�

and Cl��x� $ �Cl�����x�� A plot of the function over the domain ��� ��� is shown



��


in Figure A��� Numerous connections exist among Clausen�s integral� the diloga�

rithm� and Lobachevsky�s function� For instance� from the integral representation

of Clausen�s function it is easy to see that

L�x� $
�

�
Cl��� � �x� � x log �� �A����

The counterpart to equation �A���� that we shall use in reducing ��a� x� is

F ��� x� �
Z x

�
log�� % sin� cos �� d�� �A����

In the mid ��th century F� W� Newman showed that this and many closely related

integrals can be reduced to Clausen�s integral ������ One such identity derived by

Newman ����� p� ��� �Also see Lewin ���� p� ����� is

F ��� x� $ x log
�
sin�

�

�

�
� 	 log

�
tan�

�

�

�

�Cl���x� % Cl���x� �	� % Cl���	�� �A����

where tan 	 � sinx��tan x
�
% cos x�� By means of this identity� the reduction of

��a� x� is straightforward	

��a� x� $
�

�

Z �x

�
log

�
� %

cos �

�a� % �

�
d� % x log

�
�a� % �

�

�
� � L�x�

$
�

�
F
�
sin��

�

�a� % �
� �x

�
% x log

�
�a� % �

�

�
� � L�x��

From the above and equations �A���� and �A���� it follows that ��a� x� can be

expressed in terms of elementary functions and Clausen�s integral� This represen�

tation rests upon a single special function of a real variable over a �nite range�



���

A�
 The L� and L� Norms of K

To compute the operator norm jjK jj� we begin by considering the function norm
jjKf jj� for an arbitrary function f � L��M�S�� m���� The derivation proceeds

by manipulating the expression for jjKf jj� to produce a product of jj f jj� and
a new expression� which will be the operator norm jjK jj�� Since all quantities
are positive� we shall drop the absolute value signs� Let f denote a �eld radiance

function and observe that

jjKf jj� $
Z
M

Z
�o

Z
�i

k�r
u� � u� f�r�u�� d��u�� d��u� dm�r�

$
Z
M

Z
�i

Z
�o

k�r
u� � u� f�r�u�� d��u� d��u�� dm�r�

$
Z
M

Z
�i

f�r�u��
� Z

�o

k�r
u� � u� d��u�
�
d��u�� dm�r��

where the �rst equality follows from the de�nitions� The second equality holds

by Fubini�s theorem ����� p� ����� which states that the order of integration can

be changed when the integral exists and is �nite� In the �nal equality� we have

isolated the kernel of the integral operator K to the extent possible�

Next� we introduce the constant � de�ned by

� � ess sup
r�M

ess sup
u���i

Z
�o

k�r
u� � u� d��u�� �A����

which is independent of the function f � Since this quantity bounds the e�ect of

the bracketed expression in the context of the outer double integral� we have

jjKf jj� � �
Z
M

Z
�i

f�r�u�� d��u�� dm�r�

$ � jj f jj�� �A��
�

which shows that � is an upper bound on jjK jj�� To show that it is a lower bound
as well we must show that this bound is either attained by some function f � or

approached from below by a sequence of functions f�� f�� � � �� We can accomplish



���

the latter by a sequence of beams that approach perfect collimation about the

incident direction u� in which

Z
�o

k�r
u� � u� d��u� �A����

is maximal� If this maximum is not attainable �e�g� the re�ectivity may increase as

the incident beam approaches grazing�� then we let the sequenct f�� f�� � � � approach

perfect collimation while simultaneously approaching grazing� From this it follows

that � is also a lower bound on jjK jj�� Therefore�

jjK jj� $ ess sup
r�M

ess sup
u���i

Z
�o

k�r
u� � u� d��u�� �A����

The computation for the L��norm proceeds similarly� For any f � L� we have

jjKf jj
�

$ ess sup
r�M

ess sup
u��o

Z
�i

k�r
u� � u� f�r�u�� d��u��

�
�
ess sup
r�M

ess sup
u��o

Z
�i

k�r
u� � u� d��u��
�
jj f jj

�
�

so the expression in brackets is an upper bound on jjK jj
�
� Again� this bound can

be approached from below by considering a sequence of increasingly collimated

beams about a direction of maximal re�ectance� Therefore� we have

jjK jj
�
$ ess sup

r�M
ess sup
u��o

Z
�i

k�r
u� � u� d��u��� �A����

which di�ers from the L� norm by exchanging the arguments of the kernel� ��



���

A�
 Proof of theorem ��

In this appendix we provide the proof of theorem �� on page ���� Although the

proof of this theorem is given by Kato for �nite�dimensional linear operators �

� p�

����� and is left as an exercise by Dunford and Schwartz ���� p� ����� the general

theorem for in�nite�dimensional operators does not appear to be widely known�

For completeness� a proof which parallels that given by Kato is included below� To

simplify notation the theorem is proved using functions of a single real variable�

Let K be the integral operator de�ned by

�Ku��x� �
Z
D

k�x� y� u�y� d��y��

where u and v are real�valued functions on some domain D� � is a positive measure
on a ��algebra over D� and the kernel k 	 D � D � IR is such that both jjK jj�
and jjK jj

�
are �nite� Letting v $ Ku� we have

jv�x�j
jjK jj

�

�
Z
D

jk�x� y�j
jjK jj

�

ju�y�j d��y�

$
Z
D

ju�y�j db�x�y�� �A����

where b�x is the positive measure de�ned by
b�x�E� � Z

E

jk�x� y�j
jjK jj

�

d��y�

for all measurable E � D� By the de�nition of jjK jj
�
it follows that b�x�D� � �

for all x � D� Now� let p � � be �xed and let � denote the function ��x� � jxjp�
Since � is convex and b�x�D� � �� we may apply Jensen�s inequality ����� p� ��� to
obtain

�
� Z

D

ju�y�j db�x�y� � � Z
D

� �u�y�� db�x�y�� �A����

for all x � D� By equation �A���� we may rewrite equation �A���� as� jv�x�j
jjK jj

�

�p
�

Z
D

ju�y�jp db�x�y�



���

for all x � D� Multiplying both sides by jjK jjp
�
and integrating� we have

Z
D

jv�x�jp d��x� � jjK jjp��
�

Z
D

Z
D

jk�x� y�j ju�y�jp d��y� d��x�

$ jjK jjp��
�

Z
D

� Z
D

jk�x� y�j d��x�
�
ju�y�jp d��y�

� jjK jjp��
�

jjK jj�
Z
D

ju�y�jp d��y��

where the interchange of the integrals in the middle equality is justi�ed by the

bounds on K and Fubini�s theorem ����� p� ����� Identifying the remaining inte�

grals as Lp�norms� we have

jj v jjpp � jjK jjp��
�

jjK jj� jj u jjpp� �A����

Raising both sides of equation �A���� to the power ��p yields

jj v jjp � jjK jj	p��
�p
�

jjK jj��p� jju jjp �A����

for all u� Since v $ Ku� equation �A���� implies that

jjK jjp � jjK jj	p��
�p
�

jjK jj��p� � �A����

by the de�nition of an operator norm� Finally� for any A � �� B � �� and x � ��

we have

A�� �

x B
�

x � max fA�Bg�� �

x � max fA�Bg �

x $ max fA�Bg �

Thus� from equation �A���� it follows that

jjK jjp � max f jjK jj
�
� jjK jj� g �

for any p � �� which completes the proof� ��



���

A��� Proof of theorem ��

We shall prove theorem �� on page ��� by extending theorem �� slightly to ac�

commodate the form of the local re�ection operator K� To begin� let Kr denote

the local re�ection operator restricted to the point r � M� That is�

�Kr h��u� �
Z
�i

k�r
u� � u� h�u�� d��u��� �A����

where h is a radiance distribution function at r� Then K and Kr are related by

�Kf��r�u� $ �Krf�r� ��� �u�� �A��
�

From the known bounds on K it follows that kKr k� $ kKr k� $ � for almost

every r � M� From theorem �� it then follows that kKr kp � � for almost every

r � M and for all � � p � �� since Kr is a kernel operator in standard form�
Because the Lp�norm corresponding to the restricted function h is

jjh jjp �
�Z
S�
jh�u�jp d��u�

���p
� �A����

we may express the Lp�norm for radiance functions as

jj f jjp $
�Z
M

jj f�r� �� jjpp dm�r�
���p

� �A����

The corresponding bound on K now follows easily by observing that

jjKf jjpp $
Z
S�
jjKrf�r� �� jjpp dm�r�

�
Z
S�
�p jj f�r� �� jjpp dm�r�

$ �p jj f jjpp

for all f � Therefore� jjK jjp � �� ��
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