
CS667 Lecture 17: Subsurface Light Diffusion 14 April 2005

Tim Isganitis, Alex Liberman Lecturer: Steve Marschner

1 Mathematical Preliminaries

Our discussion of Subsurface Light Diffusion relies heavily on two mathematical concepts: moments and
derivatives. Therefore, before delving into the main topic of the lecture we will first review this essential
material. The familiar reader can skip this section, with the caveat that at several times in our future
derivations we will reference lemmas that we derive here.

1.1 Moments

The nth moment of a function f(x) is defined to be:

µn(f) =
∫

xnf(x)dx

So, for a one-dimensional function over the real line, the zeroth moment represents the area under the
curve. If this function is a probability distribution (a pdf), then the first moment corresponds to the mean
of the distribution.

In the context of light transport we will be considering functions that are distributions over the sphere
of possible directions (i.e. f(ω) where ω is a unit vector). The moments of such a function are slightly more
complicated, but we will only be using the first two:

µ0(f(ω)) =
∫

4π

f(ω)dω

µ1(f(ω)) =
∫

4π

ωf(ω)dω

In terms of light transport, the 0th moment of the radiance function at a point x in space, L(x, ω), is the
fluence (or scalar irradiance), φ(x):

µ0(L(x, ω)) =
∫

4π

L(x, ω)dω = φ(x)

The 1st moment of a function f(ω) is a vector. We can write it in terms of its components:

µ1(f(ω)) =
∫

4π

 ωx

ωy

ωz

 f(ω)dω =

 ∫
4π

ωxf(ω)dω∫
4π

ωyf(ω)dω∫
4π

ωzf(ω)dω

 (1)

Intuitively, the first moment can be thought of as pointing in the average direction of the function. For
light transport this is the average direction of light flow, called the vector irradiance ~E(x).

We will now derive some lemmas about the moments of different classes of functions f(ω) over the unit
sphere.

1



1.1.1 Constant Functions

For a constant function f(ω) = C:

µ0(C) =
∫

4π

Cdω = 4πC (2)

µ1(C) =
∫

4π

Cωdω = ~0 (3)

(2) is a direct result of solving the integral. Intuitively, the reason for (3) is that all pairs of vectors pointing
in opposite directions have equal magnitude (C) and thus cancel. More concretely, recalling that we can treat
µ1(f(ω)) as three separate integrals (as shown in (1)), we examine one of the components of the resulting
vector:∫

4π

Cωidω = C

∫
4π

ωidω = C

∫ 2π

0

∫ π
2

−π
2

sin θ cos θdθdφ = 2πC

∫ π
2

−π
2

sin θ cos θdθ = 2πC[sin θ]
π
2
−π

2
= 0 (4)

The spherical coordinates over which we integrate are aligned such that the component in which we are
interested varies only with θ. This can be accomplished by letting θ measure the distance from this component
and φ the rotation around this component. From the integral above we see see that all components are 0
and thus the resulting vector is ~0. Briefly stated, we have shown that

∫
4π

ωdω = ~0.

1.1.2 Linear Functions

For a linear function: f(ω) = ~a · ω

µ0(~a · ω) =
∫

4π

(~a · ω)dω =
∫

4π

(axωx + ayωy + azωz)dω

This integral can be divided into three integrals of the form
∫
4π

aiωidω which, as we showed in (4), are each
equal to 0. Thus the entire integral is 0 and we conclude:

µ0(~a · ω) = 0 (5)

We can write the first moment as:

µ1(~a · ω) =
∫

4π

ω(~a · ω)dω

Again, we examine an individual component of the resulting vector:

(µ1(~a · ω))i =
∫

4π

ωi(
∑

j

ajωj)dω =
∑

j

aj

∫
4π

ωiωjdω

To evaluate this integral, notice that if i 6= j then ωiωj is antisymmetric across the ωi = 0 plane and thus∫
4π

ωiωjdω = 0. Otherwise, if i = j we need to evaluate
∫
4π

ω2
i dω. We know that ω2

1 + ω2
2 + ω2

3 = 1 since ω
is a vector on the unit sphere. Therefore, ∫

(ω2
1 + ω2

2 + ω2
3)dω = 4π∫

ω2
1dω +

∫
ω2

2dω +
∫

ω2
3dω = 4π
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Since by symmetry all these components must be equal, we conclude that
∫

ω2
i dω = 4π

3 . Continuing our
reasoning above,

(µ1(~a · ω))i =
∑

j

aj

∫
4π

ωiωjdω =
∑

j

ajδij
4π

3
=

4π

3
ai

where

δij =

{
1 if i = j

0 i 6= j

Since this is true for each component:

µ1(~a · ω) =
4π

3
~a (6)

1.2 Quadratic Functions

For a quadratic function: f(ω) = ωT Aω = ω · (Aω) =
∑

i,j ωiaijωj

µ0(ωT Aω) =
4π

3
Tr(A) (7)

where Tr(A) =
∑

i aii (the trace of the matrix A—the sum of its diagonal entries). This follows from the
same reasoning used to derive the first moment of a linear function. We can expand

∫
ωT Aωdω into the sum∑

i,j aij

∫
ωiωjdω. From the derivation above we know

∫
ωiωjdω will be 0 if i 6= j and 4π

3 if i = j. Thus we
can remove all terms where i 6= j from the sum, leaving:

∑
i aii

∫
ωiωidω = 4π

3

∑
i aii = 4π

3 Tr(A). Note that
if A is the identity matrix then µ0(f(ω)) =

∫
ωT ωdω = 4π.

And the first moment of a quadratic function:

µ1(ωT Aω) = ~0 (8)

This fact follows from a symmetry argument similar to the one used for the first moment of a constant
function.

1.2.1 The Phase Function

In light transport problems the phase function p(ωin, ωout) describes the scattering behavior of the medium.
Specifically, it represents the probability that a scattered photon travelling from a direction ωin will alter its
path to travel along the vector ωout.

If we fix one direction of the phase function (set ωin = ω0) we get a function of direction: f(ω∗) = p(ω0, ω
∗)

which depends only on ω0 · ω∗. Thus f is rotationally symmetric about ω0.

µ0(f(ω)) =
∫

4π

p(ω0, ω)dω = 1 (9)

This follows directly from the fact that f is a probability distribution (over the directions in which a photon
will scatter).

We can write the first moment as:

µ1(f(ω)) =
∫

4π

p(ω0, ω)ωdω
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Since f is rotationally symmetric about ω0, it follows that the first moment will be a scalar multiple of ω0.
So, to solve this integral it will be helpful to define a new basis (~u,~v, ω0) where ~u and ~v are chosen arbitrarily
to satisfy the orthogonality condition. The three components of the first moment are then:

µ1(f(ω)) =

 ∫
p(ω0, ω)(~u · ω)dω∫
p(ω0, ω)(~v · ω)dω∫
p(ω0, ω)(ω0 · ω)dω


The first two components are zero because of symmetry (the upper and lower hemishperes will cancel). The
last component is the familiar g. Thus,

µ1(p(ω0, ω)) = gω0 (10)

1.3 Derivatives

Here we will provide a short review of the multi-dimensional derivatives we will use in the derivation. In all
cases we assume ~x is a vector in <3.

For a scalar function f(~x), the gradient is defined to be:

∇f(~x) =
[

∂

∂x1
f,

∂

∂x2
f,

∂

∂x3
f

]
and the directional derivative (the change in function value at point ~x in direction ~u) is defined to be:

(~u · ∇)f = ~u · ∇f (11)

For the special case of a linear function that varies with position, f(~x, ω) = a(~x) · ω (where ω is fixed),
we can simplify the directional derivative, in either vector or summation notation, as follows:

(~u · ∇)f(~x, ω) = (~u · ∇)(a(~x) · ω) =
∑

j

uj
∂

∂xj
(a(~x) · ω)

~u · (∇a(~x) · ω) =
∑

j

uj
∂

∂xj

∑
i

ai(~x)ωi

ωT (∇a(~x))~u =
∑
i,j

ωi
∂ai

∂xj
(~x)︸ ︷︷ ︸

(∇a)ij

vj (12)

For a vector function F (~x) =

 f1(x1)
f2(x2)
f3(x3)

, the derivative is defined to be:

∇F =


∂f1
∂x1

∂f1
∂x2

∂f1
∂x3

∂f2
∂x1

∂f2
∂x2

∂f2
∂x3

∂f3
∂x1

∂f3
∂x2

∂f3
∂x3


and the divergence is defined to be:

∇ · F = Tr(∇F ) =
∂f1

∂x1
+

∂f2

∂x2
+

∂f3

∂x3

4



The divergence can be thought of as measuring flow into and out of an infinitely small volume around the
point ~x. If ∇ · F = 0 the flow in equals the flow out. If ∇ · F > 0 the flow out is greater than the flow in
(and vice versa for < 0).

Finally, the Laplacian (scalar second derivative) of a vector function is:

∇2F =
∑

i

∂2F

∂xi∂xi

2 Brief Refresher on Light Scattering

Recall the rendering equation for volumetric light transport:

(ω · ∇)L(x, ω) = −σtL(x, ω) + σs

∫
4π

p(ω, ω′)L(x, ω′)dσ(ω′) + Q(x, ω)

Where σt = σs + σa denotes the extinction coefficient, p(ω, ω′) is the phase function, and Q(x, ω) is
energy from the light source.

Below are some examples of what happens to light as it moves through mediums with various scattering
coefficients:

Figure 1: visible structure
(low σs)

Figure 2: some structure
(medium σs)

Figure 3: no structure (high
σs)

The last example, depicted in Figure 3, results from what is essentially isotropic scattering where a ray
of light travels a very small distance in any given direction before randomly altering its course. Standard
MC-based are too slow for computing light transport in high-scattering media such and simulating materials
such as marble, milk, and skin require a different approach.

3 Describing Subsurface Scattering - The BSSRDF

Much of the early work in subsurface scattering came from the medical physics community where diffusion
of laser beams in human tissue was of great interest. Jim Kajiya and Jos Stam were among the first to
introduce diffusion to computer graphics.

To describe subsurface scattering we need something more powerful than the BRDF (introduced by Nicodemius
et al. in Geometric considerations and nomenclature for reflectance).
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The bidirectional surface scattering reflectance distribution function (BSSRDF) is a generalization of the
BRDF.

Figure 4: BRDF: fr(x, ωi, ωr) Figure 5: BSSRDF: S(x, ωi, x
′, ωr)

From the definitions of the BRDF and the BSSRDF, equations for light transport between two points
are now:

BRDF:

Lr(xr, ωr) =
∫
H2

fr(xr, ωr, ωi)dµ(ωi)

BSSRDF:

Lr(xr, ωr) =
∫
A

∫
H2

S(xi, ωi, xr, ωr)Li(xi, wi)dµ(ωi)dA(xi)

Where the units of measurement are:

S =
dL

dΦ
=

reflected radiance
incident power

=
1

m2sr
and

fr =
dL

dE
=

reflected radiance
irradiance

=
1
sr
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4 Simplification of the Light Transport Equation

We are interested in the behavior of light after many scattering events and can make the following assumption:
after n scattering events light behaves as if it was traveling through an isotropically-scattering medium.

Figure 6: Convolution of the phase
function with itself after many scat-
tering events

4.1 An Approximation for L(x)

Using this assumption, we can approximate the true value of L(x, ω) as a linear function of the reflection
angle ω:

L̃(x, ω) = L0(x)︸ ︷︷ ︸
constant component

+ ω · L1(x)︸ ︷︷ ︸
linear component

We can now simplify the volume transport equation by substituting in L̃.

Zeroth moment becomes:

Fluence φ(x) =
∫

4π

Ldσ =
∫

4π

L̃dσ = 4πL0 +
�

�
�

�∫
ω · L1(uniform w/respect to ω) = 4πL0

L0 =
1
4π

φ(x)
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First moment becomes:

Vector irradiance ~E(x) =
∫

4π

L(ω)ωdσ =
∫

4π

L̃(ω)ωdσ =
∫

4π

(L0 + ω · L1)ωdω =

���
��

L0

∫
ωdω (anti-symmetric) +

∫
ω · (ω · L1)dω =∫

(ωω>)L1dω =
∫

(ωω>)dωL1 =
4π

3
L1

L1 =
3
4π

~E(x)

Combing these two results we get

L̃(x, ω) =
1
4π

φ(x) +
3
4π

ω · ~E(x)

4.2 Zeroth-Order Equation

We substitute our new approximated value L̃(x) in place of L(x) into the equation for volumetric light
transport:

(ω · ∇)L̃(x, ω) + σtL̃(x, ω) = σs

∫
4π

p(ω, ω′)L̃(x, ω′)dω′ + Q(x, w)

(ω · ∇)(
1
4π

φ(x) +
3
4π

ω · ~E(x)) + σt(
1
4π

φ(x) +
3
4π

ω · ~E(x)) = σs

∫
4π

p(ω, ω′)(
1
4π

φ(x) +
3
4π

ω′ · ~E(x))dω′ + Q(x,w)

And then take the 0th moments of the left- and right-hand sides of the equation, yielding the 0th order
approximation:

LHS = (ω · ∇)(
1
4π

φ(x) +
3
4π

ω · ~E(x)) + σt(
1
4π

φ(x) +
3
4π

ω · ~E(x))

=
1
4π

ω · ∇φ(x) +
3
4π

(ω · ∇)(ω · ~E(x)) + σt(
1
4π

φ(x) +
3
4π

ω · ~E(x))

=
1
4π

ω · ∇φ(x) +
3
4π

ω>(∇ ~E(x))ω + σt(
1
4π

φ(x) +
3
4π

ω · ~E(x))

µ0(LHS) = µ0

(
1
4π

ω · ∇φ(x) +
3
4π

ω>(∇ ~E(x))ω + σt(
1
4π

φ(x) +
3
4π

ω · ~E(x))
)

= µ0

(
1
4π

ω · ∇φ(x)
)

+ µ0

(
3
4π

ω>(∇ ~E(x))ω
)

+ µ0

( σt

4π
φ(x)

)
+ µ0

(
3σt

4π
ω · ~E(x)

)
=

1
4π

µ0 (ω · ∇φ(x))︸ ︷︷ ︸
µ0(~a·ω)=0 by (5)

+
3
4π

µ0

(
ω>(∇ ~E(x))ω

)
︸ ︷︷ ︸

µ0(ω>Aω)= 4π
3 Tr(A) by (7)

+
1
4π

σt µ0 (φ(x))︸ ︷︷ ︸
µ0(C)=4πC by (2)

+
3σt

4π
µ0

(
~E(x) · ω

)
︸ ︷︷ ︸
µ0(~a·ω)=0 by (5)

= 0 + Tr(∇E) + σtφ(x) + 0

µ0(LHS) = ∇ · E + σtφ(x) (12)
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µ0(RHS) = µ0

(
σs

∫
4π

p(ω, ω′)(
1
4π

φ(x) +
3
4π

ω′ · ~E(x))dω′ + Q(x, w)
)

=
σs

4π
µ0


∫

4π

p(ω, ω′)

const.︷︸︸︷
φ(x) dω′︸ ︷︷ ︸

=φ(x) (because
∫
4π

p(ω, ω′)dω′ = 1)

 +
3σs

4π
µ0


∫

4π

p(ω, ω′)ω′dω′︸ ︷︷ ︸
=

∫
4π

p(ω,ω′)ω′dω′=µ1(p(ω,ω′))=gω by (10)

·

const.︷ ︸︸ ︷
~E(x)

 + µ0 (Q(x, ω))

=
σs

4π
µ0 (φ(x))︸ ︷︷ ︸

µ0(C)=4πC by (2)

+
3σs

4π
µ0

(
gω · ~E(x)

)
︸ ︷︷ ︸
µ0(~a·ω)=0 by (5)

+Q0(x, ω)

µ0(RHS) = σsφ(x) + Q0(x, ω) (13)

Equating the moments of the two sides, we get the zeroth order approximation:

∇ · ~E(x) + σtφ(x) = σsφ(x) + Q0(x) (14)

Or equivalently,

∇ · ~E(x) = (σs − σt)(x)φ(x) + Q0(x, ω) = −σa(x)φ(x) + Q0(x)

The resulting statement tells us that the vector irradiance expresses the net flow of power across a surface
and the divergence of that says how much it’s flowing into or out of an area. Power flows out of areas where
there are sources, and into (disappears from) areas that have absorption.
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4.3 First-Order Equation

We will examine the moments of the two sides of the equation separately. First, the left hand side:

LHS = µ1 [(ω · ∇)L(~x, ω) + σtL(~x, ω)](
substituting the approximation

1
4π

φ(~x) +
3
4π

ω · ~E(~x) for L(~x, ω):
)

= µ1

[
(ω · ∇)

(
1
4π

φ(~x) +
3
4π

ω · ~E(~x)
)]

+ µ1

[
σt

(
1
4π

φ(~x) +
3
4π

ω · ~E(~x)
)]

(by applying (11) and (12) to the first two terms:)

=
1
4π

µ1(ω · ∇φ(~x))︸ ︷︷ ︸
µ1(ω·a)= 4π

3 a by(6)

+
3
4π

µ1(ωT∇ ~E(~x)ω)︸ ︷︷ ︸
µ1(ωT Aω)=0 by(8)

+
1
4π

µ1(φ(~x)σt)︸ ︷︷ ︸
µ1(c)=0 by(3)

+
3
4π

µ1(ω · ~E(~x)σt)︸ ︷︷ ︸
µ1(ω·a)= 4π

3 a by(6)

(applying the specified lemmas about moments to each term:)

=
1
4π

4π

3
∇φ(~x) + 0 + 0 +

3
4π

4π

3
σt

~E(~x)

=
1
3
∇φ(~x) + σt

~E(~x)

For the right hand side:

RHS =
σs

4π
µ1

[∫
ρ(~x, ω, ω′)φ(~x)dω′

]
+

3σs

4π
µ1

[∫
ρ(~x, ω, ω′)ω′ · ~E(~x)dω′

]
+ Q1(~x)︸ ︷︷ ︸

Q1(~x)=µ1(Q(~x))

Note that both φ(~x) and ~E(~x) are constants in their respective integrals. Therefore in the first case we are
integrating the value of the distribution over the entire sphere which, by definition, has to be one. We are
left with the first moment of the constant function 1, which by (3) is 0. For the second term, we can move
the ~E(~x) outside of the integral, leaving us with:∫

ρ(~x, ω, ω′)ω′dω′ · ~E(~x)

and, by definition, the integral is the first moment of the phase function, which by (10) is gω. Substituting
back into the equation for the right hand side:

RHS = ~0 +
3σs

4π
µ1

[
gω · ~E(~x)

]
︸ ︷︷ ︸

µ1(ω·a)= 4π
3 a by(6)

+Q1(~x)

=
3σs

4π

4π

3
g ~E(~x) + Q1(~x)

= σsg ~E(~x) + Q1(~x)
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Now, equating the two sides gives us:

1
3
∇φ(~x) + σt

~E(~x) = σsg ~E(~x) + Q1(~x)

1
3
∇φ(~x) = (−σa − σs + gσs) ~E(~x) + Q1(~x)

1
3
∇φ(~x) = −(σa + (1− g)σs︸ ︷︷ ︸

σ′s

) ~E(~x) + Q1(~x)

σ′s is called the reduced scattering coefficient. Note that this is the only place σS or g appear in the equation,
meaning that altering σs and g have the same effect. Defining σ′t = σa + σ′s to be the reduced extinction
coefficient, we can re-write the first-order equation as:

1
3
∇φ(x) = −σ′t ~E(~x) + Q1(~x) (15)

4.4 The End: A Differential Equation

We can now combine the zero- and first-order equations to get a differential equation that we can actually
use:

If sources are isotropic Q1(~x) = 0, and (15) simplifies to: ∇φ(~x) = −3σ′t(~x) ~E(~x) and solving for ~E(~x) we
get: ~E(~x) = − 1

3σ′t(~x)∇φ(~x) or just ~E = − 1
3σ′t

∇φ.

Substituting this into the zero-order equation (14), (∇ · ~E) = −σaφ + Q0 yields:

∇ · (− 1
3σ′t

∇φ) = −σaφ + Q0

− 1
3σ′t

∇2φ = −σaφ + Q0

∇2φ = 3σaσ′tφ− 3σ′tQ0

Alternatively, if we were to keep the Q1 term ( ~E = − 1
3σ′t

∇φ + 1
σ′t

Q1) the substitution will yield:

− 1
3σ′t

∇2φ +
1
σ′t

Q1 = −σaφ + Q0

D∇2φ = σaφ−Q0 + 3D∇ ·Q1

where D = 1
3σ′t

. Note that this is the form used in the [Jensen et al.] paper.
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