CS667 Lecture 8: Light Transport in Medium 17 February 2005

Theo Chao Lecturer: Steve Marschner

1 Introduction

Once we relax the light transport in vacuum assumption, we must take into account the medium in between
surfaces in the scene. Now radiance is no longer invariant along a straight line, but instead, there can be
an addition or subtraction of photons along rays between surfaces. This changes the surface solid-angle
formulation of radiance L. : M x H? — R to a 3D formulation of radiance L. : R3 x H?> — R.

There are four main events than can occur along a ray: a photon can be emitted from a particle, a photon
can hit a particle and be absorbed, a photon can hit a particle and be deflected out of the path of the ray, or

a photon from another ray can hit a particle and be deflected in to the path of the ray. The terms used for
these are respectively emission, absorbtion, out-scattering, and in-scattering.

2 Emission

The simplest case is a medium of particles that simply emit light photons. Consider a ray that travels
through 1 or 2 units of the medium:
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The generalization is that for a ray that travels through d units of a constant emissive medium, the resulting
radiance L; = L; + de, a linear growth with distance:

d
@L(t) = €(t)

where the emission €(t) can be different at different places on the ray. For a generalized position x with
a ray traveling in the direction w, the derivative along the line is the directional derivative of L(z,w), or
(w-V)L(z,w), and

(w-V)L(z,w) = e(z,w)

Usually, emission is independent of direction, or isotropic, and e(x,w) = €(z). If this is not then case, then
the emission is said to be anisotropic.



3 Absorbtion

When photons travel through an abosorbing medium, a certain percentage of the photons will hit a particle
and be absorbed, and the amount that exits is proportional to the amount that enters. Thus, instead of
absorbtion being additive like emission, it is an exponential decay.
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And in general:
L, = L;k? = L;e 74

where o, is the absorbtion coefficient. If we don’t assume that the medium is homogenous, it becomes easier
to write it as a differential equation, with the rate of change of radiance at a point proportional to the
absorbtion coefficient and radiance at the point. On a given line parametrized by ¢, this is

d
—L(t) = —o,(t)L(t
SL(t) = —oa(O)L(1)
and the general 3D directional derivative formulation is

(w-V)L(z,w) = —04(z)L(z,w)

4 QOut-Scattering

Out-scattering is the loss of photons that are deflected away in other directions. Since we are only concerned
with the radiance along a ray, the direction of the scattering is unimportant, and the effect of out-scattering
behaves identically to that of absorbtion, with a scattering coefficient of .

The total extinction coefficient, oy = o, + 04, describes the loss of radiance due to both absorbtion and
out-scattering, with the net effect

(w-V)L(z,w) = —o¢(z)L(z,w)

As seen in the directional derivative, the scattering coefficient, as well as the absorbtion coefficient, is
independent of the direction of the ray, w.



5 In-Scattering

In-scattering takes into account photons that are deflected, or scattered, from another ray into the direc-
tion of the ray we are looking at. The effect is similar to emission, but depends on the radiance in the medium.

In the isotropic case, the in-scattering depends only on the total amount of light at a point, independent of
the direction from which it arrived:

total light, or fluence ¢(z) = / L(z,w)dw
4

@(x) is the power per unit area that is scattered, uniformly distributed in the sphere. So the radiance from
the point is then ﬁgb(x), and the directional derivative is

os(x
(w-V)L(z,w) = ﬁ/ L(z,w")do (W)
47T A
If the scattering is anisotropic, though, we need to replace the ﬁ with a probability distribution p(z,w,w’),
the probability that a photon traveling in direction w will scatter in the direction w’ at the point x, and is
also known as the phase function.

Now the rate of change of the radiance due to in-scattering is

(w-V)L(z,w) = Us(x)/4 p(zr,w,w )Lz, w)do (W)

6 Phase Functions

The phase function p(z,w,w’) describes the distribution of scattering, and its integral over the sphere must
equal one. Usually, the phase function depends only on the angle between w and w’, 6, and does not vary
depending on the spatial orientation of the sphere, and can be written as p(#). The isotropic phase function

is )
0)=—
p(0) =

Another common phase function is the Heyney-Greenstein, which was proposed for the scattering from

intergalactic dust. However, it is entirely empirical and is only used because of its simple form

1—g?
p(0) = 5 3
47(1+ g% — 2gcos )z

where ¢ is the average cosine, or the expected value of w - w’

g :/ p(w,ww - w'do(w)
4
And for values of:

g = 0 = isotropic scattering
g > 0 = forward scattering
g < 0 = backward scattering

Some other examples include the Rayleigh phase function

1+ cos? 6
p(0) = SV

which relates the scattering to the wavelength and works well for smaller particles, and the Mie phase
function, which is more complex and works better for larger particles.



7 Combined Equation and Evaluation

The combined equation describing emission, absorbtion, out-scattering, and in-scattering is

(w-V)L(z,w) = —0y(z)L(z,w) + e(z,w) + US(.’E)/ p(z,w,w")L(z,w")do (W)

4T

For calculating the absorbtion, if the medium is homogenous, then the problem is trivial and can be
directly evaluated. For inhomogenous mediums, the calculation of abosorbtion and single scattering, which
only deals with the case where photons go through one deflection at most, can be done with a ray-marching
algorithm with shadow rays to the light sources. Calculating multiple scattering, where a photon may be
scattered multiple times and change its course more than once, is a much harder problem.



