
CS667 Lecture 7: Random Variables and Monte Carlo 15 February 2005

Alvin Law Lecturer: Steve Marschner

1 Random Variable Independence

Two random variables X and Y are said to be independent if and only if knowing the value of X does not
give foresight into the value of Y and vice versa. Mathematically, X and Y are independent random variables
if the following equality holds true:

Pr{X ∈ S1 ∩ Y ∈ S2} = Pr{X ∈ S1} × Pr{Y ∈ S2}

Example: X and Y are both distributed uniformly over [0,1]. The point (X,Y) is then distributed uniformly
with respect to area on the unit square:

Figure 1: Random variable independence shown on a unit square.

Here, Pr{X < a} = a, Pr{Y < b} = b, and Pr{X < a ∩ Y < b} = ab, thus X and Y are independent
random variables.

Two independent random variables X and Y also have the property

E{(X − E{X})(Y − E{Y })} = 0

which means that we expect the product of the two random variables’ deviations from their expected values
to be zero. This quantity is also called the covariance of X and Y, so we can say the covariance of two
independent variables is zero.

1



2 Monte Carlo Samples are Independent

Recall that we are trying to estimate the integral∫
f(x)dx

with an estimator

Ĩ =
1
N

N∑
i=1

g(xi)

where g(xi) = f(xi)
p(xi)

. Our estimate should yield the same expected value (else the estimate would be poor!).
In rendering, this means that our estimator should converge to the expected image. The estimator above
does yield the same expected value:

E{Ĩ} =
1
N

N∑
i=1

E{g(xi)}

=
1
N

×N × E{g(x)}

= E{g(x)}

where xi represents the independent samples of the random variable X distributed by probability distribution
p.

What is the variance of our Monte Carlo estimator?

σ2{Ĩ} = E{( 1
N

N∑
i=1

g(x)− 1
N

N∑
i=1

E{g(x)})2}

=
1

N2
E{(

∑
i=1

Ng(xi)− E{g(x)})2}

=
1

N2
E{(

∑
i,j

N(g(xi)− E{g(x)})(g(xj)− E{g(x)})}

=
1

N2
E{(

∑
i=1

N(g(xi)− E{g(x)})2 +
∑
i 6=j

(g(xi)− E{g(x)})(g(xj)− E{g(x)})}

=
1

N2

N∑
i=1

E{(g(xi)− E{g(x)})2}

=
1
N

σ{g(x)}

This makes our standard deviation
σ(Ĩ) =

1√
N

σ{g(x)}

The leading 1√
N

is our convergence rate to our expected value. A standard Monte Carlo technique converges
quite slowly, but will indeed converge to the correct solution (when variance and standard deviation approach
zero) given more samples.

3 Reducing Variance: Stratification and Importance Sampling

With such a slow convergence rate, Monte Carlo methods are often aided by stratification and importance
sampling to converge faster. Importance sampling means to intelligently choose a p(x) to deacrease the
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variance of g(x). We choose p(x) to look like f(x) so that when we sample by p(x) it looks like we are
sampling from f(x), the function we ultimately want to model. If we didn’t, we could overlook an integral
part of f(x) and fail to replicate its features. In rendering, for example, we may overlook a specular lobe in
a BRDF (Phong, for example), which makes converging to the correct image a much longer process.

Stratification helps to distribute our samples so that all parts of the function are sampled. An unstratified
selection process chooses all the samples from the same pdf p(x). A stratified selection method first partitions
the domain Ω into a number of disjoint regions Si, called strata, whose union is the whole domain, then
chooses sample xi according to pi, where pi = p(x)|Si

. The end result is a equal or lowered variance, from
σ2{Ĩ} = 1

N σ2{g(x)} in the unstratified case to σ2{Ĩ} = 1
N2

∑N
i=1 σ2{g(xi)} in the stratified case. If the

variance of the function over the individual strata pi is the same as the variance of the whole function p, the
two variances are equal. If pi has some smoothness then the variance of pi will be lower, that is,

σ2{g(xi)} < σ2{g(x)}

This will make the convergence rate better for the stratified case.

Figure 2: Unstratified sampling (top) has a large variance while stratified sampling (bottom) reduces the
variance of each strata and therefore the overall variance.
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