
CS667 Lecture 3: The BRDF, Light Transport in a Vacuum 3 February 2004

Jon Moon Lecturer: Steve Marschner

1 Radiometry examples

To conclude discussion of radiometry, we present three example exercises.

1.1 Solid angle of a disc or sphere

Given a disc or sphere of radius R with center at distance r from the point of interest, what is the solid
angle it subtends?

The solid angle of this region is equal to the area of the cap of the unit sphere, Ω. If we define the
measure σ as

σ(Ω) = |Ω|
then the area is

∫
Ω

dσ =
∫ 2π

0

∫ θ

0

sin θ dθ dφ

Note that θ is the angle down from the top of the sphere, and φ is the angle in the equatorial plane,
measured counterclockwise. This will be the convention used for the duration of this course. We evaluate
the integral as follows:

= 2π

∫ θ

0

sin θ dθ = 2π[−cos θ − (−cos 0)] = 2π(1 − cos θ)

Note that the quantity (1 − cos θ) is the height of the spherical cap, and that this result generalizes for
arbitrary bands around the sphere:

Area of band = 2π(cos θ1 − cos θ2)

1.2 Radiance of the sun, approximately

This example gives an idea of the magnitude of radiance values in the real world. Consider the irradiance of
the sun on a flat surface at noon.
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• known irradiance of the sun: 500 W/m2

• known angular subtense: 1/2o or 1/100 radian

We estimate the solid angle by treating the spherical cap as a disc, with diameter 1/100 on the unit sphere
and thus has area π/40000 steradian. Since the illumination is perpendicular, this is also the projected solid
angle. Since radiance is irradiance per unit projected solid angle, we find

L =
500 W/m2

π/40000 sr
≈ 6 × 106 W/m2sr

1.3 Reflection from a Lambertian reflector

A Lambertian reflector reflects a fraction R of its incident flux, emitting it uniformly in all directions. That
is,

(radiant exitance) M = R ∗ E (irradiance)

Recall also that

M(x) =
∫

H2
L(x, ω) dµ(ω) =

∫
H2

L dµ = L

∫
H2

dµ = πL

where µ is the projected solid angle measure. Combining these two results yields

πL = R ∗ E and so L =
R
π

E

2 The Bidirectional Reflectance Distribution Function (BRDF)

2.1 Definition

Surface reflection is an operator, taking as input an incident radiance distribution Li and producing a
reflected radiance distribution Le as output. That is, Le = R(Li).

2.2 Linearity of the BRDF

A key property of R is linearity: R(A + B) = R(A) + R(B) This linearity allows us to treat a radiance
distribution A as a sum of small light sources Aj , each contributing radiance Lj from solid angle Ωj around
ωj , and have R(A) =

∑
j R(Aj)

This means that to predict the reflection of any radiance distribution, we only need to know the reflection
for small sources. This is exactly what the BRDF tells us: the reflected distribution from a small source.
We can define the BRDF fr as the exitant radiance in a direction per incident radiance from a direction per
unit projected solid angle. That is,

fr(ωi, ωr) =
Lr

Li
/µ(Ωi)

Equivalently,

Lr = fr(ωi, ωr) Li µ(Ωi)

For our sum of small light sources Aj , we have

R(A)(ωr) =
∑

j

fr(ωj , ωr) Lj µ(Ωj)

Or as the limit as Ωj gets small:
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Lr(ωr) =
∫

H2
fr(ωi, ωr) Li(ωi) dµ(ωi)

Two other ways to think about the BRDF are:

• fr(·, ωr) represents the “sensitivity” to radiance per unit projected solid angle

• fr(ωi, ·) represents the reflected radiance for a collimated incident beam.

2.3 Properties of the BRDF

It should be obvious that a BRDF needs to conserve energy: the flux leaving a surface (radiant exitance)
must be ≤ the flux incident on the surface (irradiance) for all incident distributions:

∫
H2

Lr dµ ≤
∫

H2
Li dµ

This is true if and only if it holds for collimated illumination:
∫

H2
fr(ωi, ωr) dµ(ωr) ≤ 1 (1)

The forward implication is obvious, and the reverse implication is shown via integration:

M =
∫

H2
Lr dµ =

∫
H2

∫
H2

fr(ωi, ωr) Li(ωi) dµ(ωi) dµ(ωr)

Swapping the order of integration, we have
∫

H2
Li(ωi)

∫
H2

fr(ωi, ωr) dµ(ωr) dµ(ωi)

By (1), the underlined integral must evaluate to ≤ 1. Thus

M ≤
∫

H2
Li(ωi) dµ(ωi) = E

as claimed.
A less obvious property is Helmholtz reciprocity, which states that the BRDF has a symmetry with

respect to swapping its arguments:

fr(ωi, ωr) = fr(ωr, ωi)

The physical interpretation for this reciprocity is that the sensitivity distribution looks like the radiance
distribution:

This is a very important property, and is fundamental to many rendering algorithms.
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3 Light Transport in a vacuum

Consider the transport of light through a vacuum, by which we mean there is no participating medium. Take
the following as ground rules:

• The scene is composed of surfaces floating in a vacuum. Let all the surfaces considered together be a
piecewise smooth surface (a 2-manifold) M.

• Reflection occurs pointwise, as all surfaces are opaque and obey valid BRDFs.

• The output we are interested in - the camera image - is just a set of averages over the light reflected
from the scene surfaces, with one measurement made per pixel.

• There is an enclosure surrounding all of M, to avoid special cases for the background.

• All light in the scene is initially emitted from the surfaces

Also define:

• Le(x, ωe) is the exitant radiance from point x ∈ M to direction ωe.

• Le : M× H
2→ R

• Li(x, ωi) is the incident radiance on point x ∈ M from direction ωi

• Li : M× H
2→ R

note that ω always faces away from the surface!

• fr(x, ωi, ωe) is the BRDF at point x

• fr : M× H
2×H

2→ R

From all this, the BRDF definition gives:

Le(x, ωe) =
∫

H2
fr(x, ωi, ωe) Li(x, ωi) dµ(ωi)

or

Le = KLi where K is the reflection operator

We can think of K as the whole surface reflectance for all points everywhere rolled into a single linear
operator. We also include emittance, which adds to the reflection:

Le = KLi + L0
e

Where L0
e(x, ωe) is the radiance emitted from point x in direction ωe.

At this point, this is just a restatement of surface reflection. To make a solvable equation we need to
relate Li to Le. Fortunately, because we are considering light transport in a vacuum, they are the same
function - only with permuted domains. That is, Li(x, ω) = Le(y,−ω) for the point y that is visible from x
when looking in the direction ω. This is ray casting, essentially.

We can then define a transport operator G such that Li = GLe:

(GLe)(x, ω) = Le(ψ(x, ω),−ω)

Where ψ is the ray casting function, with ψ(x, ω) = y, and ψ : M× H
2→ M

Finally, we can substitute this into our surface reflection equation, resulting in

Le = KGLe + L0
e
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This is a very compact way to write down the rendering problem and to expose the algebraic structure.
As a final note, let 1 be the identity operator. Then we have

1Le − KGLe = L0
e

Le = (1 − KG)−1L0
e

Le = L0
e + KG(L0

e + KG(L0
e + ...))

Which is an intuitive representation for recursive ray tracing.
Next lecture we will examine Kajiya’s formulation of the rendering equation using areas.
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