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Jon Moon Lecturer: Steve Marschner

1 Radiometry examples

To conclude discussion of radiometry, we present three example exercises.

1.1 Solid angle of a disc or sphere

Given a disc or sphere of radius R with center at distance r from the point of interest, what is the solid
angle it subtends?
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The solid angle of this region is equal to the area of the cap of the unit sphere, Q2. If we define the
measure o as
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Note that 6 is the angle down from the top of the sphere, and ¢ is the angle in the equatorial plane,
measured counterclockwise. This will be the convention used for the duration of this course. We evaluate
the integral as follows:

then the area is
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Note that the quantity (1 — cos 6) is the height of the spherical cap, and that this result generalizes for
arbitrary bands around the sphere:

Area of band = 27(cos 01 — cos 6)

1.2 Radiance of the sun, approximately

This example gives an idea of the magnitude of radiance values in the real world. Consider the irradiance of
the sun on a flat surface at noon.



e known irradiance of the sun: 500 W/m?

e known angular subtense: 1/2° or 1/100 radian

We estimate the solid angle by treating the spherical cap as a disc, with diameter 1/100 on the unit sphere
and thus has area /40000 steradian. Since the illumination is perpendicular, this is also the projected solid
angle. Since radiance is irradiance per unit projected solid angle, we find

500 W/m?

=1 ~6x10°W/m?
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1.3 Reflection from a Lambertian reflector

A Lambertian reflector reflects a fraction R of its incident flux, emitting it uniformly in all directions. That
is,

(radiant exitance) M = R * F (irradiance)

Recall also that

M) = [ Lxw)du) = [ Lau=1 [ du=nL
H2 H2 H2
where p is the projected solid angle measure. Combining these two results yields

7L =Rx*xFE andso L:EE
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2 The Bidirectional Reflectance Distribution Function (BRDF)
2.1 Definition

Surface reflection is an operator, taking as input an incident radiance distribution L; and producing a
reflected radiance distribution L. as output. That is, L. = R(L;).

2.2 Linearity of the BRDF

A key property of R is linearity: R(A + B) = R(A) + R(B) This linearity allows us to treat a radiance
distribution A as a sum of small light sources A;, each contributing radiance L; from solid angle ; around
wj, and have R(A) = >, R(4;)

This means that to predict the reflection of any radiance distribution, we only need to know the reflection
for small sources. This is exactly what the BRDF tells us: the reflected distribution from a small source.
We can define the BRDF f,. as the exitant radiance in a direction per incident radiance from a direction per
unit projected solid angle. That is,

ol i) = 2/ m(Sh)

Equivalently,

Lr - fr(wivwr) L’L :LL(Q’L)

For our sum of small light sources A;, we have
R(A)(wr) =Y frlws,wr) Lj p(8))
J

Or as the limit as 2; gets small:



Lo(wr) = | fr(wi,wr) Li(wi) du(wi)
H
Two other ways to think about the BRDF are:

e f.(-,w,) represents the “sensitivity” to radiance per unit projected solid angle

o f.(w;,-) represents the reflected radiance for a collimated incident beam.

2.3 Properties of the BRDF

It should be obvious that a BRDF needs to conserve energy: the flux leaving a surface (radiant exitance)
must be < the flux incident on the surface (irradiance) for all incident distributions:
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This is true if and only if it holds for collimated illumination:

fr(wi,wr) dp(wy) <1 (1)
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The forward implication is obvious, and the reverse implication is shown via integration:

M= [ L du= / fr(@iwr) Li(ws) dys(wr) dp(w,)
H2 H2 JH2

Swapping the order of integration, we have

/H2 Li(%‘)/IHI2 fr(wiywr) dp(wy) dp(w;)

By (1), the underlined integral must evaluate to < 1. Thus

M < /H Li(ws) dp(ws) = B

as claimed.
A less obvious property is Helmholtz reciprocity, which states that the BRDF has a symmetry with
respect to swapping its arguments:

fr(wiva) = fr(wv"vwi)

The physical interpretation for this reciprocity is that the sensitivity distribution looks like the radiance
distribution:
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This is a very important property, and is fundamental to many rendering algorithms.



3 Light Transport in a vacuum

Consider the transport of light through a vacuum, by which we mean there is no participating medium. Take
the following as ground rules:

e The scene is composed of surfaces floating in a vacuum. Let all the surfaces considered together be a
piecewise smooth surface (a 2-manifold) M.

e Reflection occurs pointwise, as all surfaces are opaque and obey valid BRDF's.

e The output we are interested in - the camera image - is just a set of averages over the light reflected
from the scene surfaces, with one measurement made per pixel.

e There is an enclosure surrounding all of M, to avoid special cases for the background.
e All light in the scene is initially emitted from the surfaces

Also define:

o L.(x,w,) is the exitant radiance from point x € M to direction w,.

o L.: MxH?*-R

L;(x,w;) is the incident radiance on point x € M from direction w;

Li: MxH2—=R

note that w always faces away from the surface!

e f.(x,wi,w.) is the BRDF at point x
o fr: MxH?*xH?2— R
From all this, the BRDF definition gives:
Le(x,we) = . fr(x,wi,we) Li(x,w;) dp(wi)
or
L. =KL; where K is the reflection operator

We can think of K as the whole surface reflectance for all points everywhere rolled into a single linear
operator. We also include emittance, which adds to the reflection:

L.=KL;+L?

Where L9(x,w,) is the radiance emitted from point x in direction we.

At this point, this is just a restatement of surface reflection. To make a solvable equation we need to
relate L; to L.. Fortunately, because we are considering light transport in a vacuum, they are the same
function - only with permuted domains. That is, L;(x,w) = L.(y, —w) for the point y that is visible from x
when looking in the direction w. This is ray casting, essentially.

We can then define a transport operator G such that L; = GL,:

(GLG)(X7(“)) = Le(w(wi)v _w)

Where 1) is the ray casting function, with ¢(x,w) =y, and 1 : M x H?— M
Finally, we can substitute this into our surface reflection equation, resulting in

L.=KGL,+L°



This is a very compact way to write down the rendering problem and to expose the algebraic structure.
As a final note, let 1 be the identity operator. Then we have
1L, - KGL, = L°
L.=(1-KG)'L?
L. =LY+ KG(L2 + KG(L? + ...))

Which is an intuitive representation for recursive ray tracing.
Next lecture we will examine Kajiya’s formulation of the rendering equation using areas.



