1 Radiometry examples

To conclude discussion of radiometry, we present three example exercises.

1.1 Solid angle of a disc or sphere

Given a disc or sphere of radius R with center at distance r from the point of interest, what is the solid angle it subtends?

The solid angle of this region is equal to the area of the cap of the unit sphere, Ω. If we define the measure σ as

$$
\sigma(\Omega)=|\Omega|
$$

then the area is

$$
\int_{\Omega} d \sigma=\int_{0}^{2 \pi} \int_{0}^{\theta} \sin \theta d \theta d \phi
$$

Note that θ is the angle down from the top of the sphere, and ϕ is the angle in the equatorial plane, measured counterclockwise. This will be the convention used for the duration of this course. We evaluate the integral as follows:

$$
=2 \pi \int_{0}^{\theta} \sin \theta d \theta=2 \pi[-\cos \theta-(-\cos 0)]=2 \pi(1-\cos \theta)
$$

Note that the quantity $(1-\cos \theta)$ is the height of the spherical cap, and that this result generalizes for arbitrary bands around the sphere:

$$
\text { Area of band }=2 \pi\left(\cos \theta_{1}-\cos \theta_{2}\right)
$$

1.2 Radiance of the sun, approximately

This example gives an idea of the magnitude of radiance values in the real world. Consider the irradiance of the sun on a flat surface at noon.

- known irradiance of the sun: $500 \mathrm{~W} / \mathrm{m}^{2}$
- known angular subtense: $1 / 2^{\circ}$ or $1 / 100$ radian

We estimate the solid angle by treating the spherical cap as a disc, with diameter $1 / 100$ on the unit sphere and thus has area $\pi / 40000$ steradian. Since the illumination is perpendicular, this is also the projected solid angle. Since radiance is irradiance per unit projected solid angle, we find

$$
L=\frac{500 \mathrm{~W} / \mathrm{m}^{2}}{\pi / 40000 \mathrm{sr}} \approx 6 \times 10^{6} \mathrm{~W} / \mathrm{m}^{2} \mathrm{sr}
$$

1.3 Reflection from a Lambertian reflector

A Lambertian reflector reflects a fraction R of its incident flux, emitting it uniformly in all directions. That is,

$$
\text { (radiant exitance) } M=R * E \text { (irradiance) }
$$

Recall also that

$$
M(\mathbf{x})=\int_{\mathbb{H}^{2}} L(\mathbf{x}, \omega) d \mu(\omega)=\int_{\mathbb{H}^{2}} L d \mu=L \int_{\mathbb{H}^{2}} d \mu=\pi L
$$

where μ is the projected solid angle measure. Combining these two results yields

$$
\pi L=R * E \quad \text { and so } \quad \mathrm{L}=\frac{\mathrm{R}}{\pi} \mathrm{E}
$$

2 The Bidirectional Reflectance Distribution Function (BRDF)

2.1 Definition

Surface reflection is an operator, taking as input an incident radiance distribution L_{i} and producing a reflected radiance distribution L_{e} as output. That is, $L_{e}=\mathcal{R}\left(L_{i}\right)$.

2.2 Linearity of the BRDF

A key property of \mathcal{R} is linearity: $\mathcal{R}(A+B)=\mathcal{R}(A)+\mathcal{R}(B)$ This linearity allows us to treat a radiance distribution A as a sum of small light sources A_{j}, each contributing radiance L_{j} from solid angle Ω_{j} around ω_{j}, and have $\mathcal{R}(A)=\sum_{j} \mathcal{R}\left(A_{j}\right)$

This means that to predict the reflection of any radiance distribution, we only need to know the reflection for small sources. This is exactly what the BRDF tells us: the reflected distribution from a small source. We can define the BRDF f_{r} as the exitant radiance in a direction per incident radiance from a direction per unit projected solid angle. That is,

$$
f_{r}\left(\omega_{i}, \omega_{r}\right)=\frac{L_{r}}{L_{i}} / \mu\left(\Omega_{i}\right)
$$

Equivalently,

$$
L_{r}=f_{r}\left(\omega_{i}, \omega_{r}\right) L_{i} \mu\left(\Omega_{i}\right)
$$

For our sum of small light sources A_{j}, we have

$$
\mathcal{R}(A)\left(\omega_{r}\right)=\sum_{j} f_{r}\left(\omega_{j}, \omega_{r}\right) L_{j} \mu\left(\Omega_{j}\right)
$$

Or as the limit as Ω_{j} gets small:

$$
L_{r}\left(\omega_{r}\right)=\int_{\mathbb{H}^{2}} f_{r}\left(\omega_{i}, \omega_{r}\right) L_{i}\left(\omega_{i}\right) d \mu\left(\omega_{i}\right)
$$

Two other ways to think about the BRDF are:

- $f_{r}\left(\cdot, \omega_{r}\right)$ represents the "sensitivity" to radiance per unit projected solid angle
- $f_{r}\left(\omega_{i}, \cdot\right)$ represents the reflected radiance for a collimated incident beam.

2.3 Properties of the BRDF

It should be obvious that a BRDF needs to conserve energy: the flux leaving a surface (radiant exitance) must be \leq the flux incident on the surface (irradiance) for all incident distributions:

$$
\int_{\mathbb{H}^{2}} L_{r} d \mu \leq \int_{\mathbb{H}^{2}} L_{i} d \mu
$$

This is true if and only if it holds for collimated illumination:

$$
\begin{equation*}
\int_{\mathbb{H}^{2}} f_{r}\left(\omega_{i}, \omega_{r}\right) d \mu\left(\omega_{r}\right) \leq 1 \tag{1}
\end{equation*}
$$

The forward implication is obvious, and the reverse implication is shown via integration:

$$
M=\int_{\mathbb{H}^{2}} L_{r} d \mu=\int_{\mathbb{H}^{2}} \int_{\mathbb{H}^{2}} f_{r}\left(\omega_{i}, \omega_{r}\right) L_{i}\left(\omega_{i}\right) d \mu\left(\omega_{i}\right) d \mu\left(\omega_{r}\right)
$$

Swapping the order of integration, we have

$$
\int_{\mathbb{H}^{2}} L_{i}\left(\omega_{i}\right) \int_{\mathbb{H}^{2}} f_{r}\left(\omega_{i}, \omega_{r}\right) d \mu\left(\omega_{r}\right) d \mu\left(\omega_{i}\right)
$$

By (1), the underlined integral must evaluate to ≤ 1. Thus

$$
M \leq \int_{\mathbb{H}^{2}} L_{i}\left(\omega_{i}\right) d \mu\left(\omega_{i}\right)=E
$$

as claimed.
A less obvious property is Helmholtz reciprocity, which states that the BRDF has a symmetry with respect to swapping its arguments:

$$
f_{r}\left(\omega_{i}, \omega_{r}\right)=f_{r}\left(\omega_{r}, \omega_{i}\right)
$$

The physical interpretation for this reciprocity is that the sensitivity distribution looks like the radiance distribution:

This is a very important property, and is fundamental to many rendering algorithms.

3 Light Transport in a vacuum

Consider the transport of light through a vacuum, by which we mean there is no participating medium. Take the following as ground rules:

- The scene is composed of surfaces floating in a vacuum. Let all the surfaces considered together be a piecewise smooth surface (a 2-manifold) \mathcal{M}.
- Reflection occurs pointwise, as all surfaces are opaque and obey valid BRDFs.
- The output we are interested in - the camera image - is just a set of averages over the light reflected from the scene surfaces, with one measurement made per pixel.
- There is an enclosure surrounding all of \mathcal{M}, to avoid special cases for the background.
- All light in the scene is initially emitted from the surfaces

Also define:

- $L_{e}\left(\mathbf{x}, \omega_{e}\right)$ is the exitant radiance from point $\mathbf{x} \in \mathcal{M}$ to direction ω_{e}.
- $L_{e}: \mathcal{M} \times \mathbb{H}^{2} \rightarrow \mathbb{R}$
- $L_{i}\left(\mathbf{x}, \omega_{i}\right)$ is the incident radiance on point $\mathbf{x} \in \mathcal{M}$ from direction ω_{i}
- $L_{i}: \mathcal{M} \times \mathbb{H}^{2} \rightarrow \mathbb{R}$ note that ω always faces away from the surface!
- $f_{r}\left(\mathbf{x}, \omega_{i}, \omega_{e}\right)$ is the BRDF at point \mathbf{x}
- $f_{r}: \mathcal{M} \times \mathbb{H}^{2} \times \mathbb{H}^{2} \rightarrow \mathbb{R}$

From all this, the BRDF definition gives:

$$
L_{e}\left(\mathbf{x}, \omega_{e}\right)=\int_{\mathbb{H}^{2}} f_{r}\left(\mathbf{x}, \omega_{i}, \omega_{e}\right) L_{i}\left(\mathbf{x}, \omega_{i}\right) d \mu\left(\omega_{i}\right)
$$

or

$$
L_{e}=\mathbf{K} L_{i} \quad \text { where } \mathbf{K} \text { is the reflection operator }
$$

We can think of \mathbf{K} as the whole surface reflectance for all points everywhere rolled into a single linear operator. We also include emittance, which adds to the reflection:

$$
L_{e}=\mathbf{K} L_{i}+L_{e}^{0}
$$

Where $L_{e}^{0}\left(\mathbf{x}, \omega_{e}\right)$ is the radiance emitted from point \mathbf{x} in direction ω_{e}.
At this point, this is just a restatement of surface reflection. To make a solvable equation we need to relate L_{i} to L_{e}. Fortunately, because we are considering light transport in a vacuum, they are the same function - only with permuted domains. That is, $L_{i}(\mathbf{x}, \omega)=L_{e}(\mathbf{y},-\omega)$ for the point \mathbf{y} that is visible from \mathbf{x} when looking in the direction ω. This is ray casting, essentially.

We can then define a transport operator \mathbf{G} such that $L_{i}=\mathbf{G} L_{e}$:

$$
\left(\mathbf{G} L_{e}\right)(\mathbf{x}, \omega)=L_{e}(\psi(\mathbf{x}, \omega),-\omega)
$$

Where ψ is the ray casting function, with $\psi(\mathbf{x}, \omega)=\mathbf{y}$, and $\psi: \mathcal{M} \times \mathbb{H}^{2} \rightarrow \mathcal{M}$
Finally, we can substitute this into our surface reflection equation, resulting in

$$
L_{e}=\mathbf{K G} L_{e}+L_{e}^{0}
$$

This is a very compact way to write down the rendering problem and to expose the algebraic structure. As a final note, let $\mathbf{1}$ be the identity operator. Then we have

$$
\begin{gathered}
\mathbf{1} L_{e}-\mathbf{K G} L_{e}=L_{e}^{0} \\
L_{e}=(\mathbf{1}-\mathbf{K G})^{-1} L_{e}^{0} \\
L_{e}=L_{e}^{0}+\mathbf{K G}\left(L_{e}^{0}+\mathbf{K G}\left(L_{e}^{0}+\ldots\right)\right)
\end{gathered}
$$

Which is an intuitive representation for recursive ray tracing.
Next lecture we will examine Kajiya's formulation of the rendering equation using areas.

