CS6640 Computational Photography

16. Camera shake removal

Approaches to shake deblurring

- Measure shake vs. fully blind approach
- Estimate kernel and deconvolve vs. full-image estimation
- In this lecture:

BenEzra & Nayar 2004: measured, direct deconvolve Fergus et al. 2006: blind kernel estimation Shan et al. 2008: blind, full-image estimation Joshi et al. 2010: measured, semi-blind kernel estimation

2-camera rig

Indoor Scene: Face (Focal length = 593mm, Exposure time = 0.5 sec.)

Fig. 10. Experimental results for indoor face scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.

Indoor Scene: 3D **Objects (Focal length = 604mm, Exposure time =** 0.5 sec.)

Fig. 9. Experimental results for indoor 3D objects scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The deblurring result. The magnified windows show details. (d) Ground truth image that was captured without motion blur using a tripod.

Outdoor Scene: Building (Focal length = 633mm, Exposure time = 1.0 sec.)

Fig. 11. Experimental results for outdoor building scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its paths and its energy distribution. (c) The deblurring result. Notice the clarity of the text. (d) Ground truth image that were captured without motion blur using a tripod.

Outdoor Night Scene: Tower (Focal length = 884mm, Exposure time = 4.0 secs.)

Fig. 12. Experimental results for outdoor tower scene. (a) Input images, including the motion blurred image from the primary detector and a sequence of low-resolution frames from the secondary detector. (b) The computed PSF. Notice the complexity of its path and its energy distribution. (c) The deblurring result. (d) Ground truth image that was captured without motion blur using a tripod.

Argument for spatial invariace

Figure 4: *Left*: The whiteboard test scene with dots in each corner. *Right*: Dots from the corners of images taken by different people. Within each image, the dot trajectories are very similar suggesting that image blur is well modeled as a spatially invariant convolution.

Bayesian estimate of kernel

$$p(\mathbf{K}, \nabla \mathbf{L}_{p} | \nabla \mathbf{P}) \propto p(\nabla \mathbf{P} | \mathbf{K}, \nabla \mathbf{L}_{p}) p(\nabla \mathbf{L}_{p}) p(\mathbf{K})$$
(2)
$$= \prod_{i} \mathbb{N}(\nabla \mathbf{P}(i) | (\mathbf{K} \otimes \nabla \mathbf{L}_{p}(i)), \sigma^{2})$$
(3)
$$\prod_{i} \sum_{c=1}^{C} \pi_{c} \mathbb{N}(\nabla \mathbf{L}_{p}(i) | 0, v_{c}) \prod_{j} \sum_{d=1}^{D} \pi_{d} \mathbb{E}(\mathbf{K}_{j} | \lambda_{d})$$

Prior on image gradients

Figure 2: *Left:* A natural scene. *Right:* The distribution of gradient magnitudes within the scene are shown in red. The y-axis has a logarithmic scale to show the heavy tails of the distribution. The mixture of Gaussians approximation used in our experiments is shown in green.

Estimation results

Shan et al.

Challenges (1)

Assuming no noise

Challenges (2)

With noise

[Slides by Qi Shan]

Noise constraint

Noise constraint

Possible noise models: (1) $\prod_{i} N(n_i | 0, \zeta_0)$ (2) $\sum_{i} N(\nabla n_i | 0, \zeta_1)$

$\sum_{i} N(n_i \mid 0, \zeta_0) \sum_{i} N(\nabla n_i \mid 0, \zeta_1)$

Noise constraint

Possible noise models: (1) $\sum_{i} N(n_i | 0, \zeta_0)$ (2) $\sum_{i} N(\nabla n_i | 0, \zeta_1)$

 $\frac{\prod_{i} N(n_i \mid 0, \zeta_0)}{\prod_{i} N(\nabla n_i \mid 0, \zeta_1)}$ $\frac{\sum_{i} N(\nabla \nabla n_i \mid 0, \zeta_2)}{\sum_{i} N(\nabla \nabla n_i \mid 0, \zeta_2)}$

A random variable following an independent Gaussian distribution also has its any order derivative following it. [Simon 2002]

$P(n) = \prod_{i} N(n_i \mid 0, \zeta_0) \prod_{i} N(\nabla n_i \mid 0, \zeta_1)$ $(\nabla(\nabla n_i) | 0, \zeta_2)$

Image Global Statistics

Image Global Statistics

Image Global Statistics

$\log(P_1(\nabla L)) = \begin{cases} -k |\nabla L| & x \le c \\ -(a(\nabla L)^2 + b) & x > c \end{cases}$

Ι

L

 $\boldsymbol{p}_{2}(\boldsymbol{L}) = \prod_{i \in white} N(\nabla L_{i} - \nabla I_{i} \mid 0, \sigma_{1})$

 $\boldsymbol{p}_{2}(\boldsymbol{L}) = \prod_{i \in white} N(\nabla L_{i} - \nabla I_{i} \mid \boldsymbol{0}, \boldsymbol{\sigma}_{1})$

Kernel Statistics

exponentially distributed

 $p(f) = \prod_{i} e^{-\tau f_{j}}, \quad f_{j} \ge 0$

Combining All constraints

 $\min E(L, f) = \min \log[p(n)p_1(\nabla L)p_2(L)p(f)]$

Two-step iterative optimization

- Optimize *L*
- Optimize *f*

Iteratively optimize L: Update LUpdate Ψ

Iteration I (converge)

Time: about 30 seconds for an 800x600 image

Iteration 8 (converge)

A comparison

RL deconvolution

A comparison

acm Transactions on Graphics

Proceedings of ACM SIGGRAPH 2005

Our deconvolution

Two-step iterative optimization
Optimize L
Optimize f

 $\min E(L, f) = \min \log[p(n)p_1(\nabla L)p_2(L)p(f)]$

$$E(f) = \left(\sum_{\nabla} w_{\nabla^*} \| \nabla^* L \otimes f - \nabla^* I \|_2^2\right) + \| f \|_1$$

A form of L1-norm regularized problem and is solved using an interior point method

Iteration 0

[Slides by Qi Shan]

Time: about 350 seconds for an 800x600 image Convergence

System Overview

Bluetooth Radio-axis Accelerometer

Arduino Board LR Trigger Gyros

Camera and Blur

Recovering Motion from Inertial Sensors Research

Measured by accelerometers and gyros

Integrate to Recover Camera Rotation/Translation

Spatially Varying Deblurring

Research

Blurry

Spatially-Varying Kernels (Single Depth Plane)

Deblurred Using Correct Kernel

Deblurred Using Center Kernel

How accurate are the sensors

Drift Correction

- Assume drift is linear
- Solve for x,y endpoint (u,v) (and planar depth) using sensors as a constraint and maximize image prior

$$I = \underset{I,d,u,v}{\operatorname{argmin}} [||\vec{B} - A(d, u, v)\vec{I}||^2 / \sigma^2 + \lambda ||\nabla I||^{0.8}]$$

Nelder–Mead Simplex Optimization

Large blur kernels (>20 pixels)

Blurry Image

Using PSFs from the raw sensor values

Our Output (after drift correction) Using Groundtruth Motion

Large blur kernels (>20 pixels)

Blurry Image

Our Output

Shan et al.

Fergus et al.

Results: Deblurred

Results: Deblurred

Results: Deblurred

Comparison to Spatially Invariant Deblurringsearch

Shan et al.

Our Output

75

Results: Deblurred

Bibliography

- R. Fergus, B Singh, A Hertzmann, S T Roweis, and W.T. Freeman, **Removing camera shake** from a single photograph, *SIGGRAPH 2006*.
- N Joshi, S.B. Kang, C L Zitnick, and R Szeliski, **Image deblurring using inertial measurement** sensors, *SIGGRAPH 2010*.
- S.K. Nayar and M Ben-Ezra, Motion-based motion deblurring, PAMI 26:6 (2004).
- Q Shan, J Jia, and A Agarwala, **High-quality motion deblurring from a single image**, *SIGGRAPH 2008*.
- W.H. Richardson, **Bayesian-Based Iterative Method of Image Restoration**, *JOSA* 62:1 (1972).
- L.B. Lucy, **An iterative technique for the rectification of observed distributions**, *The Astronomical Journal* 79:6 (1974).