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Final projects
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• Flexible group size

• This weekend: group yourselves and send me:
a one-paragraph description of your idea if you are fixed on one
one-sentence descriptions of 3 ideas if you are looking for one

• Next week: project proposal
one-page description
plan for mid-project milestone

• Before thanksgiving: milestone report
• December 5 (day of scheduled final exam): final presentations



© 2008 Steve Marschner • Cornell CS4620 Spring 2008 • Lecture 17

Compositing
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Foreground and background

• How we compute new image varies with position

• Therefore, need to store some kind of tag to say what 
parts of the image are of interest

use foreground

use background
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Binary image mask

• First idea: store one bit per pixel
– answers question “is this pixel part of the foreground?”

– causes jaggies similar to point-sampled rasterization
– same problem, same solution: intermediate values
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Partial pixel coverage

• The problem: pixels near boundary are not strictly 
foreground or background

– how to represent this simply?
– interpolate boundary pixels between the fg. and bg. colors
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Alpha compositing

• Formalized in 1984 by Porter & Duff
• Store fraction of pixel covered, called α

– this exactly like a spatially varying crossfade

• Convenient implementation
– 8 more bits makes 32
– 2 multiplies + 1 add per pixel for compositing

A covers
area α

B shows
through
area (1 − α)
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Alpha compositing—example
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Creating alpha mattes
• Compositing is ubiquitous in film production

merge separately shot live action
merge visual effects with live action
merge visual effects from different studios/renderers

• Also useful in photography, graphic design
composite photos [wired cover]
photos as non-rectangular design elements [newsweek cover]

• The alpha channel can be called a “matte”
(dates from matte paintings, painted on glass to allow backgrounds 
to show through when photographed)

• Getting a matte for a photographic source is tricky
and getting it right is crucial to good results
leads to hours and hours of manual pixel-tweaking

9
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Matting
• Someone has computed C = F over B and lost F and B, and we 

are supposed to recover F (including α) and B.
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When you can arrange it, it’s much easier if B is some very unlikely color…

The H
obbit prom

otional im
age
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Strategy
• Simple approaches used for analog and early digital chroma-

key devices

and other more complicated schemes
• More principled approach: Bayesian matting

based on statistical models for colors of F and B
compute per-pixel statistical estimate of each pixel’s F and α

11

↵ = 1� clamp(a1(Cb � a2Cg)) Form
ula from

 [Sm
ith & Blinn 1996]

for a blue background (bluescreen)
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Trimap
• Someone has to specify which part is supposed to be extracted

• Trimap: label pixels as definitely F, definitely B, or not sure
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Figure 2 Summary of input images and results. Input images (top row): a blue-screen matting example of a toy lion, a synthetic
“natural image”of the same lion (for which the exact solution is known), and two real natural images, (a lighthouse and a woman). Input
segmentation (middle row): conservative foreground (white), conservative background (black), and “unknown” (grey). The leftmost
segmentation was computed automatically (see text), while the rightmost three were specifi ed by hand. Compositing results (bottom row):
the results of compositing the foreground images and mattes extracted through our Bayesian matting algorithm over new background
scenes. (Lighthouse image and the background images in composite courtesy Philip Greenspun, http://philip.greenspun.com. Woman
image was obtained from Corel Knockout’s tutorial, Copyright c© 2001 Corel. All rights reserved.)
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Alpha Matte Composite Inset

Figure 3 Blue-screen matting of lion (taken from leftmost column of Figure 2). Mishima’s results in the top row suffer from “blue spill.”
The middle and bottom rows show the Bayesian result and ground truth, respectively.
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Figure 1 Summary of algorithms. Each of the algorithms shown in this fi gure requires some specifi cation of background and foreground
pixels. Mishima’s algorithm (a) uses these samples to form a global distribution, whereas Knockout (b), Ruzon-Tomasi (c), and our
new Bayesian approach (d) analyze unknown pixels using local distributions. The dark gray area in (c) corresponds to a segment within
the unknown region that will be evaluated using the statistics derived from the square region’s overlap with the labeled foreground and
background. Figures (e)-(h) show how matte parameters are computed using the Mishima, Knockout, Ruzon-Tomasi, and our Bayesian
approach, respectively.

fractionally interpolated covariance ΣC , as depicted in Fig-
ure 1(g). The optimal alpha is the one that yields an inter-
mediate distribution for which the observed color has maxi-
mum probability; i.e., the optimal α is chosen independently
of F and B. As a post-process, the F and B are computed
as weighted sums of the foreground and background cluster
means using the individual pairwise distribution probabilities
as weights. The F and B colors are then perturbed to force
them to be endpoints of a line segment passing through the
observed color and satisfying the compositing equation.

Both the Knockout and the Ruzon-Tomasi techniques can
be extended to video by hand-segmenting each frame, but
more automatic techniques are desirable for video. Mit-
sunaga et al. [6] developed the AutoKey system for extract-
ing foreground and alpha mattes from video, in which a
user seeds a frame with foreground and background con-
tours, which then evolve over time. This approach, however,
makes strong smoothness assumptions about the foreground
and background (in fact, the extracted foreground layer is as-
sumed to be constant near the silhouette) and is designed for
use with fairly hard edges in the transition from foreground
to background; i.e., it is not well-suited for transparency and
hair-like silhouettes.

In each of the cases above, a single observation of a pixel
yields an underconstrained system that is solved by building
spatial distributions or maintaining temporal coherence. Wal-

lace [12] provided an alternative solution that was indepen-
dently (and much later) developed and refined by Smith and
Blinn [11]: take an image of the same object in front of mul-
tiple known backgrounds. This approach leads to an overcon-
strained system without building any neighborhood distribu-
tions and can be solved in a least-squares framework. While
this approach requires even more controlled studio conditions
than the single solid background used in blue screen matting
and is not immediately suitable for live-action capture, it does
provide a means of estimating highly accurate foreground and
alpha values for real objects. We use this method to provide
ground-truth mattes when making comparisons.

3. Our Bayesian framework
For the development that follows, we will assume that our
input image has already been segmented into three regions:
“background,” “foreground,” and “unknown,” with the back-
ground and foreground regions having been delineated con-
servatively. The goal of our algorithm, then, is to solve for
the foreground color F , background color B, and opacity α
given the observed colorC for each pixel within the unknown
region of the image. Since F ,B, andC have three color chan-
nels each, we have a problem with three equations and seven
unknowns.
Like Ruzon and Tomasi [10], we will solve the problem

in part by building foreground and background probability

[C
huang et al. 2001]
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Estimating the matte
• Applying the pattern of 

MAP estimation:

• Bayesian matting:
gaussian noise model for probability of C
F, B, α assumed independent
multivariate gaussians for F, B
α assumed uniform

13

joint distribution: p(a, b)
marginal distribution (projection): p(a) =

R
b p(a, b)

conditional distribution (slice): p(a|b) = p(a, b)/p(b)
Bayes: p(a|b)p(b) = p(a)p(b|a)p(a)

refresher

p(F,B,↵ |C)

what we want
to maximize
(likelihood)

A Bayesian Approach to Digital Matting

Yung-Yu Chuang1 Brian Curless1 David H. Salesin1,2 Richard Szeliski2

1Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195
2Microsoft Research, Redmond, WA 98052
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Abstract
This paper proposes a new Bayesian framework for solving
the matting problem, i.e. extracting a foreground element from
a background image by estimating an opacity for each pixel
of the foreground element. Our approach models both the
foreground and background color distributions with spatially-
varying sets of Gaussians, and assumes a fractional blending
of the foreground and background colors to produce the final
output. It then uses a maximum-likelihood criterion to esti-
mate the optimal opacity, foreground and background simul-
taneously. In addition to providing a principled approach to
the matting problem, our algorithm effectively handles objects
with intricate boundaries, such as hair strands and fur, and
provides an improvement over existing techniques for these
difficult cases.

1. Introduction
In digital matting, a foreground element is extracted from a
background image by estimating a color and opacity for the
foreground element at each pixel. The opacity value at each
pixel is typically called its alpha, and the opacity image, taken
as a whole, is referred to as the alpha matte or key. Fractional
opacities (between 0 and 1) are important for transparency
and motion blurring of the foreground element, as well as for
partial coverage of a background pixel around the foreground
object’s boundary.
Matting is used in order to composite the foreground ele-

ment into a new scene. Matting and compositing were origi-
nally developed for film and video production [4], where they
have proven invaluable. Nevertheless, “pulling a matte” is
still somewhat of a black art, especially for certain notoriously
difficult cases such as thin whisps of fur or hair. The prob-
lem is difficult because it is inherently underconstrained: for a
foreground element over a single background image there are
in general an infinite number of interpretations for the fore-
ground’s color versus opacity.
In practice, it is still possible to pull a satisfactory matte in

many cases. One common approach is to use a background
image of known color (typically blue or green) and make cer-
tain assumptions about the colors in the foreground (such as
the relative proportions of red, green, and blue at each pixel);
these assumptions can then be tuned by a human operator.

Other approaches attempt to pull mattes from natural (arbi-
trary) backgrounds, using statistics of known regions of fore-
ground or background in order to estimate the foreground and
background colors along the boundary. Once these colors are
known, the opacity value is uniquely determined.
In this paper, we survey the most successful previous ap-

proaches to digital matting—all of them fairly ad hoc—and
demonstrate cases in which each of them fails. We then in-
troduce a new, more principled approach to matting, based
on a Bayesian framework. While no algorithm can give per-
fect results in all cases (given that the problem is inherently
underconstrained), our Bayesian approach appears to give im-
proved results in each of these cases.

2. Background
As already mentioned, matting and compositing were origi-
nally developed for film and video production. In 1984, Porter
and Duff [8] introduced the digital analog of the matte—the
alpha channel—and showed how synthetic images with alpha
could be useful in creating complex digital images. The most
common compositing operation is the over operation, which
is summarized by the compositing equation:

C = αF + (1 − α)B , (1)

where C, F , and B are the pixel’s composite, foreground,
and background colors, respectively, andα is the pixel’s opac-
ity component used to linearly blend between foreground and
background.
The matting process starts from a photograph or set of pho-

tographs (essentially composite images) and attempts to ex-
tract the foreground and alpha images. Matting techniques
differ primarily in the number of images and in what a pri-
ori assumptions they make about the foreground, background,
and alpha.
Blue screen matting was among the first techniques used

for live action matting. The principle is to photograph the sub-
ject against a constant-colored background, and extract fore-
ground and alpha treating each frame in isolation. This sin-
gle image approach is underconstrained since, at each pixel,
we have three observations and four unknowns. Vlahos pi-
oneered the notion of adding simple constraints to make the
problem tractable; this work is nicely summarized by Smith

[Chuang et al. 2001]

what we have
a model for
(probability)

need some
assumptions
here (prior)

= p(C |F,B,↵)p(F,B,↵)
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Bayesian matting math

14

p(F,B,↵ |C)

p(C |F,B,↵) = N(C � [↵F + (1� ↵)B],�C)

p(F,B,↵) = kN(F � F̄ ,⌃F )N(B � B̄,⌃B)

2 log p(F,B,↵ |C) = [C �B � ↵(F �B)]

2/�C + (F � ¯F )

T
⌃F (F � ¯F ) + (B � ¯B)

T
⌃B(B � ¯B)

multivariate
normal dist.

prob. of α covariance
matrix

multivariate
isotropic normal dist.

variance
(of image noise)

what to maximize bilinear in α and (F,B) (+ log k)

uses a procedure of alternating linear 
system solves

for α and for (F,B)

refresher

= p(C |F,B,↵)p(F,B,↵)

joint distribution: p(a, b)
marginal distribution (projection): p(a) =

R
b p(a, b)

conditional distribution (slice): p(a|b) = p(a, b)/p(b)
Bayes: p(a|b)p(b) = p(b|a)p(a)
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Defining priors for F and B
• Use the weighted covariance of a region of the image around 

the pixel being solved

• Solve the problem by marching inward from
the edges of the “unknown” area

15

(⌃F )ij =
X

k

wk(Fk,i � F̄i)(Fk,j � F̄j)

,
X

k

wk

Mishima Knockout Ruzon-Tomasi Bayesian
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Figure 1 Summary of algorithms. Each of the algorithms shown in this fi gure requires some specifi cation of background and foreground
pixels. Mishima’s algorithm (a) uses these samples to form a global distribution, whereas Knockout (b), Ruzon-Tomasi (c), and our
new Bayesian approach (d) analyze unknown pixels using local distributions. The dark gray area in (c) corresponds to a segment within
the unknown region that will be evaluated using the statistics derived from the square region’s overlap with the labeled foreground and
background. Figures (e)-(h) show how matte parameters are computed using the Mishima, Knockout, Ruzon-Tomasi, and our Bayesian
approach, respectively.

fractionally interpolated covariance ΣC , as depicted in Fig-
ure 1(g). The optimal alpha is the one that yields an inter-
mediate distribution for which the observed color has maxi-
mum probability; i.e., the optimal α is chosen independently
of F and B. As a post-process, the F and B are computed
as weighted sums of the foreground and background cluster
means using the individual pairwise distribution probabilities
as weights. The F and B colors are then perturbed to force
them to be endpoints of a line segment passing through the
observed color and satisfying the compositing equation.

Both the Knockout and the Ruzon-Tomasi techniques can
be extended to video by hand-segmenting each frame, but
more automatic techniques are desirable for video. Mit-
sunaga et al. [6] developed the AutoKey system for extract-
ing foreground and alpha mattes from video, in which a
user seeds a frame with foreground and background con-
tours, which then evolve over time. This approach, however,
makes strong smoothness assumptions about the foreground
and background (in fact, the extracted foreground layer is as-
sumed to be constant near the silhouette) and is designed for
use with fairly hard edges in the transition from foreground
to background; i.e., it is not well-suited for transparency and
hair-like silhouettes.

In each of the cases above, a single observation of a pixel
yields an underconstrained system that is solved by building
spatial distributions or maintaining temporal coherence. Wal-

lace [12] provided an alternative solution that was indepen-
dently (and much later) developed and refined by Smith and
Blinn [11]: take an image of the same object in front of mul-
tiple known backgrounds. This approach leads to an overcon-
strained system without building any neighborhood distribu-
tions and can be solved in a least-squares framework. While
this approach requires even more controlled studio conditions
than the single solid background used in blue screen matting
and is not immediately suitable for live-action capture, it does
provide a means of estimating highly accurate foreground and
alpha values for real objects. We use this method to provide
ground-truth mattes when making comparisons.

3. Our Bayesian framework
For the development that follows, we will assume that our
input image has already been segmented into three regions:
“background,” “foreground,” and “unknown,” with the back-
ground and foreground regions having been delineated con-
servatively. The goal of our algorithm, then, is to solve for
the foreground color F , background color B, and opacity α
given the observed colorC for each pixel within the unknown
region of the image. Since F ,B, andC have three color chan-
nels each, we have a problem with three equations and seven
unknowns.
Like Ruzon and Tomasi [10], we will solve the problem

in part by building foreground and background probability

color 
channels

i and j nearby
pixels k

depends on
distance and 
known α

[C
huang et al. 2001]
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Bayesian matting results
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Figure 2 Summary of input images and results. Input images (top row): a blue-screen matting example of a toy lion, a synthetic
“natural image”of the same lion (for which the exact solution is known), and two real natural images, (a lighthouse and a woman). Input
segmentation (middle row): conservative foreground (white), conservative background (black), and “unknown” (grey). The leftmost
segmentation was computed automatically (see text), while the rightmost three were specifi ed by hand. Compositing results (bottom row):
the results of compositing the foreground images and mattes extracted through our Bayesian matting algorithm over new background
scenes. (Lighthouse image and the background images in composite courtesy Philip Greenspun, http://philip.greenspun.com. Woman
image was obtained from Corel Knockout’s tutorial, Copyright c© 2001 Corel. All rights reserved.)
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Alpha Matte Composite Inset

Figure 3 Blue-screen matting of lion (taken from leftmost column of Figure 2). Mishima’s results in the top row suffer from “blue spill.”
The middle and bottom rows show the Bayesian result and ground truth, respectively.

[C
huang et al. 2001]
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Figure 2 Summary of input images and results. Input images (top row): a blue-screen matting example of a toy lion, a synthetic
“natural image”of the same lion (for which the exact solution is known), and two real natural images, (a lighthouse and a woman). Input
segmentation (middle row): conservative foreground (white), conservative background (black), and “unknown” (grey). The leftmost
segmentation was computed automatically (see text), while the rightmost three were specifi ed by hand. Compositing results (bottom row):
the results of compositing the foreground images and mattes extracted through our Bayesian matting algorithm over new background
scenes. (Lighthouse image and the background images in composite courtesy Philip Greenspun, http://philip.greenspun.com. Woman
image was obtained from Corel Knockout’s tutorial, Copyright c© 2001 Corel. All rights reserved.)
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Alpha Matte Composite Inset

Figure 3 Blue-screen matting of lion (taken from leftmost column of Figure 2). Mishima’s results in the top row suffer from “blue spill.”
The middle and bottom rows show the Bayesian result and ground truth, respectively.

[C
huang et al. 2001]
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Alpha Matte Composite Inset Alpha Matte Composite Inset
Figure 5 Natural image matting. These two sets of photographs correspond to the rightmost two columns of Figure 2, and the insets
show both a close-up of the alpha matte and the composite image. For the woman’s hair, Knockout loses strands in the inset, whereas
Ruzon-Tomasi exhibits broken strands on the left and a diagonal color discontinuity on the right, which is enlarged in the inset. Both
Knockout and Ruzon-Tomasi suffer from background spill as seen in the lighthouse inset, with Knockout practically losing the railing.

to image matting. Next, we hope to extend our framework
to support mixtures of Gaussians in a principled way, rather
than arbitrarily choosing among paired Gaussians as we do
currently. Finally, we plan to extend our work to video mat-
ting with soft boundaries.
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Closed form matting
(blackboard)



Previous approaches

         The trimap interface:
•Bayesian Matting (Chuang et al, CVPR01)

•Poisson Matting (Sun et al SIGGRAPH 04)
•Random Walk (Grady et al 05)

         Scribbles interface:
•Wang&Cohen ICCV05
      

slide by Anat Levin, W
eizm

ann Institute of Science



Problems with trimap based approaches

Input Scribbles Bayesian matting from 
scribbles

Good matting from 
scribbles

•Iterate between solving for F,B and solving for 
•Accurate trimap required

(Replotted from Wang&Cohen)

slide by Anat Levin, W
eizm

ann Institute of Science
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Closed-form matting results

24to the peacock, also captures some of the vegetation in the
background. The last example is the noisy step function in
Fig. 6. In this case, the eigenvector corresponding to ! ¼ 0:17

captures all of the image noise, whereas using a larger
! results in a less noisy eigenvector. However, an appropriate
choice of a global " yields an eigenvector with a perfect step
function. This is an excellent result if the goal is a hard
segmentation, but if the goal is a soft alpha matte, it is
preferable to have an edge whose smoothness is proportional
to the smoothness of the edge in the input image, so the
matting eigenvector might be more appropriate. Thus,
designing a good matting affinity is not equivalent to
designing a good affinity for hard segmentation.

5.1 The Eigenvectors as Guides
Although the matting problem is ill posed without some
user input, the matting Laplacian matrix contains a lot of
information on the image even before any constraints have
been provided, as demonstrated in the previous section.

This suggests that looking at some of the smallest
eigenvectors of the matting Laplacian can guide the user
where to place scribbles. For example, the extracted matte and
the smallest eigenvectors tend to be piecewise constant over
the same regions. If the values inside a segment in the
eigenvector image are coherent, a single scribble within such
a segment should suffice to propagate the desired value to the
entire segment. On the other hand, areas where the
eigenvector’s values are less coherent correspond to more
“difficult” regions in the image, suggesting that more
scribbling efforts might be required there. We note, however,
that a basic strategy for scribble placing is just to examine the
input image and place scribbles on regions with different
colors. This is also evident by the fact that when the matting
Laplacian is constructed using ! ¼ 0, the null space of the
matting Laplacian will contain the three color channels.

Fig. 10 illustrates how a scribbling process may be guided
by the eigenvectors. By examining the two smallest eigen-
vectors (Figs. 10a and 10b), we placed a scribble inside each

region exhibiting coherent eigenvector values (Fig. 10c). The
resulting matte is shown in Fig. 10d. Note that the scribbles in
Fig. 10c were our first and single attempt to place scribbles on
this image.

Stated somewhat more precisely, the alpha matte may be
predicted by examining some of the smaller eigenvectors of
the matting Laplacian, since an optimal solution to (13) will be
to a large degree spanned by the smaller eigenvectors. In fact,
it is possible to bound the weight of the larger eigenvectors in
the optimal solution, as a function of the ratios of the
corresponding eigenvalues.

Theorem 4. Let v1; . . . ; vN be the eigenvectors of the matting
Laplacian (12) with eigenvalues #1 " #2 " # # # " #N . Let S be
the subset of scribbled pixels, with scribble values si, i 2 S. We
denote by xðSÞ the restriction of the vector x to the scribbled
pixels (so that xðSÞ is an jSj-dimensional vector). Let $ be the
optimal matte, and suppose $ is expressed with respect to the
eigenvectors basis as $ ¼

PN
k¼1 akvk.

If the scribbles are spanned by the K smallest eigenvectors
sðSÞ ¼

PK
k¼1 bkvkðSÞ, then for every j > K

a2
j "

PK
k¼1 b

2
k

#j
" kbk

2#k
#j

:

Proof. Let % ¼
PK

k¼1 bkvk. Then, % satisfies %ðSÞ ¼ sðSÞ.
Since $ is the optimal solution $ ¼ arg min$TL$ such
that $ðSÞ ¼ sðSÞ, we must have that $TL$ " %TL%. Since
the Laplacian matrix L is positive semidefinite, the
eigenvectors v1; . . . ; vN are orthogonal. Therefore,

$TL$ ¼
XN

k¼1

a2
k#k; ð17Þ

%TL% ¼
XK

k¼1

b2
k#k ð18Þ

and as a result, for every j: a2
j#j "

PK
k¼1 b

2
k " kbk

2#K . tu

Corollary 1. If the scribbles are spanned by the null space of L,
the optimal solution will also lie in the null space of L.

Proof. Let K be the dimension of the null space. Using
the previous theorem’s notation, for every j > K,
a2
j " kbk

2#K ¼ 0, and the optimal solution is spanned
by the K null-space eigenvectors. tu
The above implies that the smoothness of the recovered

alpha matte will tend to be similar to that of the smallest
eigenvectors of L.

6 OPTIMIZATION

The optimization problem defined by (13) is one of
minimizing a quadratic cost function subject to linear
constraints, and the solution can therefore be found by
solving a sparse set of linear equations.

For the results shown here, we solve the linear system
using Matlab’s direct solver (the “backslash” operator),
which takes 20 seconds for a 200& 300 image on a 2.8 GHz
CPU. Processing large images using Matlab’s solver is
impossible due to memory limitations. To overcome this,
we use a coarse-to-fine scheme. We downsample the image
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Fig. 10. Smallest eigenvectors (a) and (b) are used for guiding scribble

placement (c). The resulting matte is shown in (d).

[Levin et al. 2008]
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25recovered matte (Fig. 5b). To overcome this, the user may pick
some blond and brown colors from the neighboring pixels
(Fig. 5c) and specify them as the foreground and background
colors in that region. The matte produced from these
constraints succeeds in capturing the partial visibility of the
background. Alternatively, the user may place a scribble
(gray scribble in Fig. 5d) indicating that this area should be
treated as a single large neighborhood, causing the brown
pixels showing through the hair to be treated the same as the
brown pixels outside. In the results section, we show that
these additional brushes are also useful for the challenging
tasks of extracting mattes for shadows and smoke.

4 PARAMETERS

To gain a better understanding of our method, we illustrate
here the effect of the different parameters on the alpha
reconstruction.

First, we demonstrate the effect of !, which is the weight of
the regularization term on a in (3). There are two reasons for
having this term. The first reason is numerical stability. For
example, if the image is constant in the jth window, aj and bj
cannot be uniquely determined without a prior. Also,
minimizing the norm of a biases the solution toward
smoother alpha mattes (since aj ¼ 0 means that " is constant
over the jth window). In Fig. 6, we demonstrate the effect of !
on the resulting matte. Our input image consists of two noisy
areas and was scribbled with two vertical lines. In Fig. 6, we
show three different mattes that were obtained using three
different values of !. We also plot the different mattes using a
one-dimensional profile of one of the rows. For comparison,
we also plot the profile of the input image scaled to the
[0, 1] range. We can see that when ! is small the sharpness of
the recovered matte matches the profile of the edge in the
input image, but the matte also captures the image noise. For
large ! values, the image noise is indeed ignored, but the
recovered alpha is oversmoothed. In our implementation, we

usually used ! ¼ 0:17 to 0:15, since real images are normally
not as noisy as the above example.

Fig. 6 demonstrates the fact that ! is an important
parameter in our system, which controls the amount of
noise versus the amount of smoothing in the solution.
Although many of our theoretical results in this paper only
hold for the case ! ¼ 0, it should be noted that, in practice,
as ! approaches zero, our method will typically fail to
produce a constant matte in textured or noisy regions.

Another parameter that affects the results is the window
size. We usually construct the matting Laplacian using
3" 3 windows. Using wider windows is more stable when
the color line model holds, but the chance of encountering
windows that deviate from the color line model grows when
the windows are larger. This is illustrated in Fig. 7. The matte
of the image was recovered using both 3" 3 and
5" 5 windows. The mattes are shown in Figs. 7b and 7c,
respectively. It may be seen that the matte in Fig. 7c contains
some errors. The reason is that some of the 5" 5 windows
deviate from the color line model since their areas cover three
differently colored background strips, whereas the
3" 3 windows are small enough and never cover more than
two strips. On the other hand, in Fig. 8, the fact that
5" 5 windows can cover three different strips is useful as
that helps the foreground constraint (the white scribble) to
propagate to the entire striped texture region (Fig. 8c).
(Despite the fact that two blue pixels in different strips are not
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Fig. 6. Computing a matte using different ! values.

Fig. 7. Computing a matte using different window sizes. (a) Input marks.

(b) 3" 3 windows. (c) 5" 5 windows.

Fig. 8. Computing a matte using different window sizes. (a) Input marks.
(b) Windows of size 3" 3. (c) Windows of size 5" 5. (d) Windows of size
3" 3 computed at coarser resolution. (e) Simple interpolation of (d).
(f) Interpolating the a and b parameters corresponding to the matte in (d)
and applying them to obtain a matte for the finer image.

[Levin et al. 2008]
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an affinity function with a global scaling parameter and,
hence, has a particular difficulty with the peacock image.

Fig. 15 presents compositing examples using our algo-
rithm for some images from the previous experiments. We
show compositing both over a constant background and
over natural images.

Fig. 16 shows an example (from [19]) where Wang and
Cohen’s method fails to extract a good matte from sparse
scribbles due to color ambiguity between the foreground
and the background. The same method, however, is able to
produce an acceptable matte when supplied with a trimap.
Our method produces a cleaner but also imperfect matte
from the same set of scribbles, but adding a small number of
additional scribbles results in a better matte. (To produce
this result, we applied clamping of alpha values as
described in Section 6.)

Fig. 17 shows another example (a close-up of the Koala
image from [17]), where there is an ambiguity between

foreground and background colors. In this case, the matte
produced by our method is clearly better than the one
produced by the Wang-Cohen method. To better understand
why this is the case, we show an RGB histogram of
representative pixels from the F andB scribbles. Some pixels
in the background fit the foreground color model much better
than the background one (one such pixel is marked red in
Fig. 17b and indicated by an arrow in Fig. 17d). As a result,
such pixels are classified as foreground with a high degree of
certainty in the first stage. Once this error has been made, it
only reinforces further erroneous decisions in the vicinity of
that pixel, resulting in a white clump in the alpha matte.

Since our method does not make use of global color models
forF andB, it can handle ambiguous situations such as that in
Fig. 17. However, there are also cases where our method fails
to produce an accurate matte for the very same reason. Fig. 18
shows an actress in front of a background with two colors.
Even though the black B scribbles cover both colors, the
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Fig. 12. Comparison with Bayesian matting [6]. (a) Input image. (b) Trimap. (c) Bayesian matting result (obtained from the Bayesian Matting Web

page). (d) Scribbles. (e) Our result.

Fig. 13. Result on Poisson matting examples. (a) Input image. (b) Bayesian matting (obtained from the Poisson matting paper). (c) Poisson matting

(obtained from the Poisson matting paper). (d) Our result. (e) Scribbles.

input Bayesian Closed-form

[Levin et al. 2008]
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input Bayesian Closed-form

[Levin et al. 2008]

an affinity function with a global scaling parameter and,
hence, has a particular difficulty with the peacock image.

Fig. 15 presents compositing examples using our algo-
rithm for some images from the previous experiments. We
show compositing both over a constant background and
over natural images.

Fig. 16 shows an example (from [19]) where Wang and
Cohen’s method fails to extract a good matte from sparse
scribbles due to color ambiguity between the foreground
and the background. The same method, however, is able to
produce an acceptable matte when supplied with a trimap.
Our method produces a cleaner but also imperfect matte
from the same set of scribbles, but adding a small number of
additional scribbles results in a better matte. (To produce
this result, we applied clamping of alpha values as
described in Section 6.)

Fig. 17 shows another example (a close-up of the Koala
image from [17]), where there is an ambiguity between

foreground and background colors. In this case, the matte
produced by our method is clearly better than the one
produced by the Wang-Cohen method. To better understand
why this is the case, we show an RGB histogram of
representative pixels from the F andB scribbles. Some pixels
in the background fit the foreground color model much better
than the background one (one such pixel is marked red in
Fig. 17b and indicated by an arrow in Fig. 17d). As a result,
such pixels are classified as foreground with a high degree of
certainty in the first stage. Once this error has been made, it
only reinforces further erroneous decisions in the vicinity of
that pixel, resulting in a white clump in the alpha matte.

Since our method does not make use of global color models
forF andB, it can handle ambiguous situations such as that in
Fig. 17. However, there are also cases where our method fails
to produce an accurate matte for the very same reason. Fig. 18
shows an actress in front of a background with two colors.
Even though the black B scribbles cover both colors, the
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Fig. 12. Comparison with Bayesian matting [6]. (a) Input image. (b) Trimap. (c) Bayesian matting result (obtained from the Bayesian Matting Web

page). (d) Scribbles. (e) Our result.

Fig. 13. Result on Poisson matting examples. (a) Input image. (b) Bayesian matting (obtained from the Poisson matting paper). (c) Poisson matting

(obtained from the Poisson matting paper). (d) Our result. (e) Scribbles.
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