CS6640 Computational Photography

13. Graph Cut Optimization

Stitching a wide-angle view

Texture synthesis with graph cuts

Synthesized Texture (Initialization)

Step 4

Step 3

Step 5
Seam Costs

Synthesized Texture (After 5 steps of Refinement)

Accounting for existing seams

[Kwatra et al. 2005]

Graph cut texture results

describing the response of that neuro ht as a function of position-is perhap functional description of that neuron. seek a single conceptual and mathem scribe the wealth of simple cell recer d neurophysiologically ${ }^{1-3}$ and infered especially if such a framework has the especially if such a framework has the helps us to understand the functio eeper way. $)$, iffe no generic mo ussians (DOG), difference of offset ivative of a Gaussian, higher derivati function, and so on-can be expect imple-cell receptive field, we noneth
describing the response of that neurophysiologically ${ }^{1-3}$ and t as a function of position-is perhally if such a framework unctional description of that neuron us to understand the eek a single conceptual and mathr way. Wherses no the cribe the wealth of simple cell ions (DOG) difference neuro 1 ll ${ }^{13}$ a neurophysiologically and vative of a Ga response of th specialy if such a framework functionnction of positionhelps us to understand the funeional description of that eper way. Whereas no generics a single conceptual and ssians (DOG), difference of a function of position-is pe vative of a Gaussian, higher donal description of that neur e response od so on-can be a single conceptual and math cribing the response of that ne the wealth of simple-cell r ss a function of position-is perbphysiologically ${ }^{1-3}$ and infe etional description of that neurony if such a framework has k a single conceptual and mathems to understand the fun ribe the wealth of simple-onceptual Whereas no generic europhysiologically ${ }^{1-3}$ and th of simple), difference of offs ecially if such a frameworlogically ${ }^{1-3}$ Gaussian, higher deri elps us to understand such a framewor so on-can be exp per way. Whereas us to understand the fun field, we nor

[s00乙 ‘ן ¡ə едұему]

Segmentation with graph cuts

(a) Image with seeds.

(b) Graph.

(d) Segmentation results.

(c) Cut.
[Boykov \& Funka-Lea 2006]

a-Expansion

a-Expansion algorithm

1. Start with an arbitrary labeling f
2. Set success := 0
3. For each label $\alpha \in \mathcal{L}$
3.1. Find $\hat{f}=\arg \min E\left(f^{\prime}\right)$ among f^{\prime} within one α-expansion of f
3.2. If $E(\hat{f})<E(f)$, set $f:=\hat{f}$ and success := 1
4. If success $=1$ goto 2
5. Return f

Multi-way cuts: Photomontage

Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Multi-way cuts: Photomontage

[Agarwala et al. 2004]

