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3.2 Surrounded Regions

So far we have shown new patches that overlap old pixels only
along a border region. In fact, it is quite common in our synthesis
approach to attempt to place a new patch over a region where the
entire area has already been covered by pixels from earlier patch
placement steps. This is done in order to overwrite potentially vis-
ible seams with the new patch, and an example of this is shown in
Figure 4. The graph formulation of this problem is really the same
as the problem of Figure 3. In this graph cut problem, all of the
pixels in a border surrounding the placement region are constrained
to come from existing pixels. These constraints are reflected in the
arcs from the border pixels to node A. We have also placed a single
constraint arc from one interior pixel to node B in order to force
at least one pixel to be copied from patch B. In fact, this kind of
a constraint arc to patch B isn’t even required. To avoid clutter in
this figure, the nodes and arcs that encode old seam costs have been
omitted. These omitted nodes make many connections between the
central portion of the graph and node B, so even if the arc to B were
removed, the graph would still be connected. In the example, the
red line shows how the resulting graph cut actually forms a closed
loop, which defines the best irregularly-shaped region to copy into
the output image.
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Figure 4: (Left) Placing a patch surrounded by already filled pixels.
Old seams (green) are partially overwritten by the new patch (bor-
dered in red). (Right) Graph formulation of the problem. Constraint
arcs to A force the border pixels to come from old image. Seam
nodes and their arcs are not shown in this image for clarity.

Finding the best cut for a graph can have a worst-case O(n2) cost
for a graph with n nodes [Sedgewick 2001]. For the kinds of graphs
we create, however, we never approach this worst-case behavior.
Our timings appear to be O(n log(n)).

4 Patch Placement & Matching

Now we describe several algorithms for picking candidate patches.
We use one of three different algorithms for patch selection, based
on the type of texture we are synthesizing. These selection methods
are: (1) random placement, (2) entire patch matching, and (3) sub-
patch matching.

In all these algorithms, we restrict the patch selection to previ-
ously unused offsets. Also, for the two matching-based algorithms,
we first find a region in the current texture that needs a lot of im-
provement. We use the cost of existing seams to quantify the error in
a particular region of the image, and pick the region with the largest
error. Once we pick such an error-region, we force the patch selec-
tion algorithm to pick only those patch locations that completely
overlap the error-region. When the texture is being initialized, i.e.,
when it is not completely covered with patches of input texture, the
error-region is picked differently and serves a different purpose: it is
picked so that it contains both initialized and uninitialized portions
of the output texture – this ensures that the texture is extended by
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Figure 5: This figure illustrates the process of synthesizing a larger
texture from an example input texture. Once the texture is initial-
ized, we find new patch locations appropriately so as to refine the
texture. Note the irregular patches and seams. Seam error measures
that are used to guide the patch selection process are shown. This
process is also shown in the video.

some amount and also that the extended portion is consistent with
the already initialized portions of the texture.

Now we discuss the three patch placement and matching meth-
ods in some detail. The same three placement algorithms are used
for synthesis of image (spatial) and video (spatio-temporal) tex-
tures, discussed in Sections 6 and 7 respectively. Note that patch
placement is really just a translation applied to the input before it is
added to the output.

Random placement: In this approach, the new patch, (the entire
input image), is translated to a random offset location. The graph
cut algorithm selects a piece of this patch to lay down into the out-
put image, and then we repeat the process. This is the fastest syn-
thesis method and gives good results for random textures.

Entire patch matching: This involves searching for translations
of the input image that match well with the currently synthesized
output. To account for partial overlaps between the input and the
output, we normalize the sum-of-squared-differences (SSD) cost
with the area of the overlapping region. We compute this cost for
all possible translations of the input texture as:

C(t) =
1

|At | Â
p2At

|I(p)�O(p+ t)|2 (2)

where C(t) is the cost at translation t of the input, I and O are the
input and output images respectively, and At is the portion of the
translated input overlapping the output. We pick the new patch loca-
tion stochastically from among the possible translations according
to the probability function:

[Kwatra et al. 2005]
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end of this overlap region to the other. That is, the chosen path is
through those pixels where the old and new patch colors are similar
(Figure 2(left)). The path determines which patch contributes pixels
at different locations in the overlap region.

To see how this can be cast into a graph cut problem, we first
need to choose a matching quality measure for pixels from the old
and new patch. In the graph cut version of this problem, the selected
path will run between pairs of pixels. The simplest quality measure,
then, will be a measure of color difference between the pairs of
pixels. Let s and t be two adjacent pixel positions in the overlap
region. Also, let A(s) and B(s) be the pixel colors at the position
s in the old and new patches, respectively. We define the matching
quality cost M between the two adjacent pixels s and t that copy
from patches A and B respectively to be:

M(s, t,A,B) = kA(s)�B(s)k+kA(t)�B(t)k (1)

where k · k denotes an appropriate norm. We consider a more so-
phisticated cost function in a later section. For now, this match cost
is all we need to use graph cuts to solve the path finding problem.

Consider the graph shown in Figure 2(right) that has one node
per pixel in the overlap region between patches. We wish to find a
low-cost path through this region from top to bottom. This region is
shown as 3⇥3 pixels in the figure, but it is usually more like 8⇥32
pixels in typical image quilting problems (the overlap between two
32⇥ 32 patches). The arcs connecting the adjacent pixel nodes s
and t are labelled with the matching quality cost M(s, t,A,B). Two
additional nodes are added, representing the old and new patches (A
and B). Finally, we add arcs that have infinitely high costs between
some of the pixels and the nodes A or B. These are constraint arcs,
and they indicate pixels that we insist will come from one particular
patch. In Figure 2, we have constrained pixels 1, 2, and 3 to come
from the old patch, and pixels 7, 8, and 9 must come from the new
patch. To find out which patch each of the pixels 4, 5, and 6 will
come from is determined by solving a graph cut problem. Specif-
ically, we seek the minimum cost cut of the graph, that separates
node A from node B. This is a classical graph problem called min-
cut or max-flow [Ford and Fulkerson 1962; Sedgewick 2001] and
algorithms for solving it are well understood and easy to code. In
the example of Figure 2, the red line shows the minimum cut, and
this means pixel 4 will be copied from patch B (since its portion of
the graph is still connected to node B), whereas pixels 5 and 6 will
be from the old patch A.

3.1 Accounting for Old Seams

The above example does not show the full power of using graph
cuts for texture synthesis. Suppose that several patches have already
been placed down in the output texture, and that we wish to lay
down a new patch in a region where multiple patches already meet.
There is a potential for visible seams along the border between old
patches, and we can measure this using the arc costs from the graph
cut problem that we solved when laying down these patches. We can
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Figure 2: (Left) Schematic showing the overlapping region between
two patches. (Right) Graph formulation of the seam finding prob-
lem, with the red line showing the minimum cost cut.

incorporate these old seam costs into the new graph cut problem,
and thus we can determine which pixels (if any) from the new patch
should cover over some of these old seams. To our knowledge, this
cannot be done using dynamic programming – the old seam and
its cost at each pixel needs to be remembered; however, dynamic
programming is a memoryless optimization procedure in the sense
that it cannot keep track of old solutions.
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Figure 3: (Left) Finding the best new cut (red) with an old seam
(green) already present. (Right) Graph formulation with old seams
present. Nodes s1 to s4 and their arcs to B encode the cost of the old
seam.

We illustrate this problem in Figure 3. In the graph formulation
of this problem, all of the old patches are represented by a single
node A, and the new patch is B. Since A now represents a collec-
tion of patches, we use As to denote the particular patch that pixel
s copies from. For each seam between old pixels, we introduce a
seam node into the graph between the pair of pixel nodes. We con-
nect each seam node with an arc to the new patch node B, and the
cost of this arc is the old matching cost when we created this seam,
i.e., M(s, t,As,At) where s and t are the two pixels that straddle
the seam. In Figure 3, there is an old seam between pixels 1 and
4, so we insert a seam node s1 between these two pixel nodes. We
also connect s1 to the new patch node B, and label this arc with
the old matching cost M(1,4,A1,A4). We label the arc from pixel
node 1 to s1 with the cost M(1,4,A1,B) (the matching cost when
only pixel 4 is assigned the new patch) and the arc from s1 to pixel
node 4 with the cost M(1,4,B,A4) (the matching cost when only
pixel 1 is assigned the new patch). If the arc between a seam node
and the new patch node B is cut, this means that the old seam re-
mains in the output image. If such an arc is not cut, this means that
the seam has been overwritten by new pixels, so the old seam cost
is not counted in the final cost. If one of the arcs between a seam
node and the pixels adjacent to it is cut, it means that a new seam
has been introduced at the same position and a new seam cost (de-
pending upon which arc has been cut) is added to the final cost. In
Figure 3, the red line shows the final graph cut: the old seam at s3
has been replaced by a new seam, the seam at s4 has disappeared,
and fresh seams have been introduced between nodes 3 and 6, 5 and
6, and 4 and 7.

This equivalence between seam cost and the min-cut of the graph
holds if and only if at most one of the three arcs meeting at the
seam nodes is included in the min-cut. The cost of this arc is the
new seam cost, and if no arc is cut, the seam is removed and the
cost goes to zero. This is true only if we ensure that M is a metric
(satisfies the triangle inequality) [Boykov et al. 1999], which is true
if the norm in Equation (1) is a metric. Satisfying the triangle in-
equality implies that picking two arcs originating from a seam node
is always costlier than picking just one of them, hence at most one
arc is picked in the min-cut, as desired. Our graph cut formulation
is equivalent to the one in [Boykov et al. 1999] and the addition
of patches corresponds to the a-expansion step in their work. In
fact, our implementation uses their code for computing the graph
min-cut. Whereas they made use of graph cuts for image noise re-
moval and image correspondence for stereo, our use of graph cuts
for texture synthesis is novel.
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through those pixels where the old and new patch colors are similar
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at different locations in the overlap region.
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and t are labelled with the matching quality cost M(s, t,A,B). Two
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some of the pixels and the nodes A or B. These are constraint arcs,
and they indicate pixels that we insist will come from one particular
patch. In Figure 2, we have constrained pixels 1, 2, and 3 to come
from the old patch, and pixels 7, 8, and 9 must come from the new
patch. To find out which patch each of the pixels 4, 5, and 6 will
come from is determined by solving a graph cut problem. Specif-
ically, we seek the minimum cost cut of the graph, that separates
node A from node B. This is a classical graph problem called min-
cut or max-flow [Ford and Fulkerson 1962; Sedgewick 2001] and
algorithms for solving it are well understood and easy to code. In
the example of Figure 2, the red line shows the minimum cut, and
this means pixel 4 will be copied from patch B (since its portion of
the graph is still connected to node B), whereas pixels 5 and 6 will
be from the old patch A.

3.1 Accounting for Old Seams

The above example does not show the full power of using graph
cuts for texture synthesis. Suppose that several patches have already
been placed down in the output texture, and that we wish to lay
down a new patch in a region where multiple patches already meet.
There is a potential for visible seams along the border between old
patches, and we can measure this using the arc costs from the graph
cut problem that we solved when laying down these patches. We can
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Figure 2: (Left) Schematic showing the overlapping region between
two patches. (Right) Graph formulation of the seam finding prob-
lem, with the red line showing the minimum cost cut.

incorporate these old seam costs into the new graph cut problem,
and thus we can determine which pixels (if any) from the new patch
should cover over some of these old seams. To our knowledge, this
cannot be done using dynamic programming – the old seam and
its cost at each pixel needs to be remembered; however, dynamic
programming is a memoryless optimization procedure in the sense
that it cannot keep track of old solutions.
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Figure 3: (Left) Finding the best new cut (red) with an old seam
(green) already present. (Right) Graph formulation with old seams
present. Nodes s1 to s4 and their arcs to B encode the cost of the old
seam.

We illustrate this problem in Figure 3. In the graph formulation
of this problem, all of the old patches are represented by a single
node A, and the new patch is B. Since A now represents a collec-
tion of patches, we use As to denote the particular patch that pixel
s copies from. For each seam between old pixels, we introduce a
seam node into the graph between the pair of pixel nodes. We con-
nect each seam node with an arc to the new patch node B, and the
cost of this arc is the old matching cost when we created this seam,
i.e., M(s, t,As,At) where s and t are the two pixels that straddle
the seam. In Figure 3, there is an old seam between pixels 1 and
4, so we insert a seam node s1 between these two pixel nodes. We
also connect s1 to the new patch node B, and label this arc with
the old matching cost M(1,4,A1,A4). We label the arc from pixel
node 1 to s1 with the cost M(1,4,A1,B) (the matching cost when
only pixel 4 is assigned the new patch) and the arc from s1 to pixel
node 4 with the cost M(1,4,B,A4) (the matching cost when only
pixel 1 is assigned the new patch). If the arc between a seam node
and the new patch node B is cut, this means that the old seam re-
mains in the output image. If such an arc is not cut, this means that
the seam has been overwritten by new pixels, so the old seam cost
is not counted in the final cost. If one of the arcs between a seam
node and the pixels adjacent to it is cut, it means that a new seam
has been introduced at the same position and a new seam cost (de-
pending upon which arc has been cut) is added to the final cost. In
Figure 3, the red line shows the final graph cut: the old seam at s3
has been replaced by a new seam, the seam at s4 has disappeared,
and fresh seams have been introduced between nodes 3 and 6, 5 and
6, and 4 and 7.

This equivalence between seam cost and the min-cut of the graph
holds if and only if at most one of the three arcs meeting at the
seam nodes is included in the min-cut. The cost of this arc is the
new seam cost, and if no arc is cut, the seam is removed and the
cost goes to zero. This is true only if we ensure that M is a metric
(satisfies the triangle inequality) [Boykov et al. 1999], which is true
if the norm in Equation (1) is a metric. Satisfying the triangle in-
equality implies that picking two arcs originating from a seam node
is always costlier than picking just one of them, hence at most one
arc is picked in the min-cut, as desired. Our graph cut formulation
is equivalent to the one in [Boykov et al. 1999] and the addition
of patches corresponds to the a-expansion step in their work. In
fact, our implementation uses their code for computing the graph
min-cut. Whereas they made use of graph cuts for image noise re-
moval and image correspondence for stereo, our use of graph cuts
for texture synthesis is novel.

[Kwatra et al. 2005]
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Figure 8: 2D texture synthesis results. We show results for textured and natural images. The smaller images are the example images used for
synthesis. Shown are CHICK PEAS, TEXT, NUTS, ESCHER, MACHU PICCHU c�Adam Brostow, CROWDS and SHEEP from left to right and top
to bottom.
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Figure 9: Comparison of our graph cut algorithm with Image Quilting [Efros and Freeman 2001]. Shown are KEYBOARD and OLIVES. For
OLIVES, an additional result is shown that uses rotation and mirroring of patches to increase variety. The quilting result for KEYBOARD was
generated using our implementation of Image Quilting; the result for OLIVES is courtesy of Efros and Freeman.

Figure 8: 2D texture synthesis results. We show results for textured and natural images. The smaller images are the example images used for
synthesis. Shown are CHICK PEAS, TEXT, NUTS, ESCHER, MACHU PICCHU c�Adam Brostow, CROWDS and SHEEP from left to right and top
to bottom.
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Figure 9: Comparison of our graph cut algorithm with Image Quilting [Efros and Freeman 2001]. Shown are KEYBOARD and OLIVES. For
OLIVES, an additional result is shown that uses rotation and mirroring of patches to increase variety. The quilting result for KEYBOARD was
generated using our implementation of Image Quilting; the result for OLIVES is courtesy of Efros and Freeman.

[Kw
atra et al. 2005]
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116 Boykov and Funka-Lea

Figure 3. A simple 2D segmentation example for a 3 × 3 image. The seeds are O = {v} and B = {p}. The cost of each edge is reflected
by the edge’s thickness. The boundary term (4) defines the costs of n-links while the regional term (3) defines the costs of t-links. Inexpensive
edges are attractive choices for the minimum cost cut. Hard constraints (seeds) (8,9) are implemented via infinity cost t-links. A globally optimal
segmentation satisfying hard constraints can be computed efficiently in low-order polynomial time using max-flow/min-cut algorithms on graphs
(Ford and Fulkerson, 1962; Goldberg and Tarjan, 1988; Cook et al., 1998).

constraints and show how they can be used to restrict
the search space of feasible solutions. Section 2.5 pro-
vides implementational details and formally shows that
a minimum cost s-t cut on an appropriately constructed
graph corresponds to a globally optimal solution among
all binary segmentations satisfying a given set of hard
constraints. Section 2.6 shows an efficient solution for
recomputing optimal segments when hard constraints
are changed. This feature of our method is very use-
ful for fast object editing, especially in 3D applica-
tions. Generalization to directed graphs is discussed in
Section 2.7. In some cases directed edges can signifi-
cantly improve segmentation results.

2.1. Basic Ideas and Background Information

First, we will introduce some terminology. A graph
G = 〈V, E〉 is defined as a set of nodes or vertices V
and a set of edges E connecting “neighboring” nodes.
For simplicity, we mainly concentrate on undirected

graphs where each pair of connected nodes is described
by a single edge e = {p, q} ∈ E .10 A simple 2D exam-
ple of an undirected graph that can be used for image
segmentation is shown in Fig. 3(b).

The nodes of our graphs represent image pixels or
voxels. There are also two specially designated termi-
nal nodes S (source) and T (sink) that represent “ob-
ject” and “background” labels. Typically, neighboring
pixels are interconnected by edges in a regular grid-like
fashion. Edges between pixels are called n-links where
n stands for “neighbor”. Note that a neighborhood sys-
tem can be arbitrary and may include diagonal or any
other kind of n-links. Another type of edges, called t-
links, are used to connect pixels to terminals. All graph
edges e ∈ E including n-links and t-links are assigned
some nonnegative weight (cost) we. In Fig. 3(b) edge
costs are shown by the thickness of edges.

An s-t cut is a subset of edges C ⊂ E such that
the terminals S and T become completely separated on
the induced graph G(C) = 〈V, E\C〉. Note that a cut

[Boykov & Funka-Lea 2006]
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Figure 1 From a set of five source images (of which four are shown on the left), we quickly create a composite family portrait in which everyone is smiling
and looking at the camera (right). We simply flip through the stack and coarsely draw strokes using the designated source image objective over the people we
wish to add to the composite. The user-applied strokes and computed regions are color-coded by the borders of the source images on the left (middle).

Time-lapse mosaics: merging a time-lapse series into a single im-
age in which time varies across the frame, without visible artifacts
from movement in the scene (Figure 7).

Panoramic stitching: creating panoramic mosaics from multiple
images covering different portions of a scene, without ghosting ar-
tifacts due to motion of foreground objects (Figure 8).

Clean-plate production: removing transient objects (such as peo-
ple) from a scene in order to produce a clear view of the back-
ground, known as a “clean plate” (Figures 9 and 12).

1.1 Related work

The history of photomontage is nearly as old as the history of pho-
tography itself. Photomontage has been practiced at least since the
mid-nineteenth century, when artists like Oscar Rejlander [1857]
and Henry Peach Robinson [1869] began combining multiple pho-
tographs to express greater detail. Much more recently, artists like
Scott Mutter [1992] and Jerry Uelsmann [1992] have used a similar
process for a very different purpose: to achieve a surrealistic effect.
Whether for realism or surrealism, these artists all face the same
challenges of merging multiple images effectively.

For digital images, the earliest and most well-known work in image
fusion used Laplacian pyramids and per-pixel heuristics of salience
to fuse two images [Ogden et al. 1985; Burt and Kolczynski 1993].
These early results demonstrated the possibilities of obtaining in-
creased dynamic range and depth of field, as well as fused images
of objects under varying illumination. However, these earlier ap-
proaches had difficulty capturing fine detail. They also did not pro-
vide any interactive control over the results. Haeberli [1994] also
demonstrated a simplified version of this approach for creating ex-
tended depth-of-field images; however, his technique tended to pro-
duce noisy results due to the lack of spatial regularization. He also
demonstrated simple relighting of objects by adding several images
taken under different illuminations; we improve upon this work,
allowing a user to apply the various illuminations locally, using a
painting interface.

More recently, the texture synthesis community has shown that rep-
resenting the quality of pixel combinations as a Markov Random
Field and formulating the problem as a minimum-cost graph-cut al-
lows the possibility of quickly finding good seams. Graph-cut opti-
mization [Boykov et al. 2001], as the technique is known, has been
used for a variety of tasks, including image segmentation, stereo
matching, and optical flow. Kwatra et al. [2003] introduced the use
of graph-cuts for combining images. Although they mostly focused
on stochastic textures, they did demonstrate the ability to combine

two natural images into one composite by constraining certain pix-
els to come from one of the two sources. We extend this approach to
the fusion of multiple source images using a set of high-level image
objectives.

Gradient-domain fusion has also been used, in various forms, to
create new images from a variety of sources. Weiss [2001] used this
basic approach to create “intrinsic images,” and Fattal et al. [2002]
used such an approach for high-dynamic-range compression. Our
approach is most closely related to Poisson image editing, as intro-
duced by Perez et al. [2003], in which a region of a single source
image is copied into a destination image in the gradient domain.
Our work differs, however, in that we copy the gradients from
many regions simultaneously, and we have no single “destination
image” to provide boundary conditions. Thus, in our case, the Pois-
son equation must be solved over the entire composite space. We
also extend this earlier work by introducing discontinuities in the
Poisson equation along high-gradient seams. Finally, in concur-
rent work, Levin et al. [2004] use gradient-domain fusion to stitch
panoramic mosaics, and Raskar et al. [2004] fuse images in the gra-
dient domain of a scene under varying illumination to create surre-
alist images and increase information density.

Standard image-editing tools such as Adobe Photoshop can be
used for photomontage; however, they require mostly manual se-
lection of boundaries, which is time consuming and burdensome.
While interactive segmentation algorithms like “intelligent scis-
sors” [Mortensen and Barrett 1995] do exist, they are not suitable
for combining multiple images simultaneously.

Finally, image fusion has also been used, in one form or another, in
a variety of specific applications. Salient Stills [Massey and Bender
1996] use image fusion for storytelling. Multiple frames of video
are first aligned into one frame of reference and then combined into
a composite. In areas where multiple frames overlap, simple per-
pixel heuristics such as a median filter are used to choose a source.
Image mosaics [Szeliski and Shum 1997] combine multiple, dis-
placed images into a single panorama; here, the primary techni-
cal challenge is image alignment. However, once the images have
been aligned, moving subjects and exposure variations can make
the task of compositing the aligned images together challenging.
These are problems that we address specifically in this paper. Ak-
ers et al. [2003] present a manual painting system for creating pho-
tographs of objects under variable illumination. Their work, how-
ever, assumes known lighting directions, which makes data acquisi-
tion harder. Also, the user must manually paint in the regions, mak-
ing it difficult to avoid artifacts between different images. Shape-
time photography [Freeman and Zhang 2003] produces compos-
ites from video sequences that show the closest imaged surface to
the camera at each pixel. Finally, in microscopy and macro pho-
tography of small specimens such as insects and flowers, scientists
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Figure 2 A set of macro photographs of an ant (three of eleven used shown on the left) taken at different focal lengths. We use a global maximum contrast
image objective to compute the graph-cut composite automatically (top left, with an inset to show detail, and the labeling shown directly below). A small
number of remaining artifacts disappear after gradient-domain fusion (top, middle). For comparison we show composites made by Auto-Montage (top, right),
by Haeberli’s method (bottom, middle), and by Laplacian pyramids (bottom, right). All of these other approaches have artifacts; Haeberli’s method creates
excessive noise, Auto-Montage fails to attach some hairs to the body, and Laplacian pyramids create halos around some of the hairs.

struggle with a very limited depth of field. To create focused im-
ages of three-dimensional specimens, it is common for scientists to
combine multiple photographs into a single extended-depth-of-field
image. The commercial software package Auto-Montage [Syn-
croscopy 2003] is the most commonly used system for this task.

Thus, most of the applications we explore in this paper are not new:
many have been explored, in one form or another, in previous work.
While the results of our framework compare favorably with — and
in certain cases actually improve upon — this previous work, we
believe that it is the convenience with which our framework can
produce comparable or improved output for such a wide variety of
applications that makes it so useful. In addition, we introduce a few
new applications of image fusion, including selective composites
and time-lapse mosaics.

In the next section, we present our digital photomontage frame-
work. Sections 3 and 4 discuss the two main technical aspects of
our work: the algorithms we use for graph-cut optimization, and for
gradient-domain fusion, respectively. Section 5 presents our results
in detail, and Section 6 suggests some areas for future research.

2 The photomontage framework

The digital photomontage process begins with a set of source im-
ages, or image stack. For best results, the source images should gen-
erally be related in some way. For instance, they might all be of the
same scene but with different lighting or camera positions. Or they
might all be of a changing scene, but with the camera locked down
and the camera parameters fixed. When a static camera is desired,
the simplest approach is to use a tripod. Alternatively, in many cases
the images can be automatically aligned after the fact using one of a
variety of previously published methods [Szeliski and Shum 1997;
Lucas and Kanade 1981].

Our application interface makes use of two main windows: a source
window, in which the user can scroll through the source images; and
a composite window, in which the user can see and interact with the
current result. New, intermediate results can also be added to the

set of source images at any time, in which case they can also be
viewed in the source window and selected by the various automatic
algorithms about to be described.

Typically, the user goes through an iterative refinement process to
create a composite. Associated with the composite is a labeling,
which is an array that specifies the source image for each pixel in
the composite.

2.1 Objectives

After loading a stack, the user can select an image objective that
can be applied globally to the entire image or locally to only a few
pixels through a “painting”-style interface. The image objective at
each pixel specifies a property that the user would like to see at
each pixel in the designated area of the composite (or the entire
composite, if it is specified globally). The image objective is com-
puted independently at each pixel position p, based on the set of
pixel values drawn from that same position p in each of the source
images. We denote this set the span at each pixel.

The general image objectives that may be applied in a variety of
applications include:

Designated color: a specific desired color to either match or avoid
(Figures 4 and 11).

Minimum or maximum luminance: the darkest or lightest pixel in
the span (Figures 4 and 11).

Minimum or maximum contrast: the pixel from the span with the
lowest or highest local contrast in the span (Figures 2 and 9).

Minimum or maximum likelihood: the least or most common pixel
value in the span (subject to a particular histogram quantization
function, Figures 5 and 12).

Eraser: the color most different from that of the current composite
(Figure 12).

Minimum or maximum difference: the color least or most similar
to the color at position p of a specific source image in the stack
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