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11. Gradient Domain Image Processing
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Problems with direct copy/paste

From Perez et al. 2003
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Image gradient

3

• Gradient: derivative of a function Rn → R (n = 2 for images)

• Note it turns a function R2 → R into a function R2 → R2

• Most such functions are not the derivative of anything!

• How do you if some function g is the derivative of something?
in 2D, simple: mixed partials are equal (g is conservative)
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A nonconservative gradient?
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M.C. Escher
Ascending and Descending
1960
Lithograph
35.5 x 28.5 cm
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Gradient: intuition
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Key gradient domain idea

1. Construct a vector field that we wish was the gradient of our 
output image

2. Look for an image that has that gradient

3. That won’t work, so look for an image that has approximately 
the desired gradient

Gradient domain image processing is all about clever choices for 
(1) and efficient algorithms for (3)

6
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Solution: paste gradient

hacky visualization of gradient
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Problem setup
Given desired gradient g on a domain D, and some constraints on 
a subset B of the domain

Find a function f on D that fits the constraints and has a gradient 
close to g

Since the gradient is a linear operator, this is a (constrained) 
linear least squares problem.

8

f⇤ : B ! IRB ⇢ D

f |B = f⇤subject tomin
f

krf � ~gk2

~g : D ! IR2
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Discretization
• Of course images are made up of finitely many pixels

• Use discrete derivative [–1 1] to approximate gradient
there are other choices but this works fine here

• Minimize sum-squared rather than integral-squared difference
sum is over edges joining neighboring pixels

• Result is a matrix that maps f to its derivative

9

⇧Bf = f⇤subject to
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as vector
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Handling constraints
• To deal with constraints just leave out the constrained pixels

• The result is an unconstrained problem to be solved for the 
unknown variables in f′

one column per unknown pixel; one row per neighbor edge
(any zero rows can be left out)
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Discrete 1D example: minimization
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orange: pixel outside the mask
red: source pixel to be pasted
blue: boundary conditions (in background)

unknowns

boundary
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Discrete 1D example: minimization
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Discrete 1D example: minimization
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With 
f1=6
f6=1

Min [(f2-f1)-1]2

+ [(f3-f2)-(-1)]2

+ [(f4-f3)-2]2

+ [(f5-f4)-(-1)]2

+ [(f6-f5)-(-1)]2
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1D example: minimization
• Copy    to
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Min [(f2-f1)-1]2
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1D example: minimization
• Copy    to
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Min [(f2-f1)-1]2

+ [(f3-f2)-(-1)]2

+ [(f4-f3)-2]2

+ [(f5-f4)-(-1)]2

+ [(f6-f5)-(-1)]2

==> f22+49-14f2
==> f32+f22+1-2f3f2 +2f3-2f2
==> f42+f32+4-2f3f4 -4f4+4f3
==> f52+f42+1-2f5f4 +2f5-2f4
==> f52+4-4f5
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1D example: big quadratic
• Copy    to

• Min (f22+49-14f2
 + f32+f22+1-2f3f2 +2f3-2f2
 + f42+f32+4-2f3f4 -4f4+4f3
 + f52+f42+1-2f5f4 +2f5-2f4
 + f52+4-4f5) 
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1D example: derivatives
• Copy    to
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1D example: derivatives
• Copy    to
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1D example: set derivatives to zero
• Copy    to
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1D example: set derivatives to zero
• Copy    to
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1D example: set derivatives to zero
• Copy    to
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1D example: set derivatives to zero
• Copy    to

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

-1
-1

-1
+2

+1

0

1
2
3
4
5
6

0
1 2 3 4 5 6 7

? ? ? ?

==>

=0
=0
=0

=0



slide by Frédo D
urand, M

IT

1D example recap
• Copy    to
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Matrix structure

18

• That matrix is GTG; least squares system reads

and the solution to (GTG)f = GTb is the minimizer.  (This system is the 
normal equations for the LLS problem.)

• Interesting that it looks like a second derivative…
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Matrix structure

18

• That matrix is GTG; least squares system reads

and the solution to (GTG)f = GTb is the minimizer.  (This system is the 
normal equations for the LLS problem.)

• Interesting that it looks like a second derivative…
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Matrix structure in 2D
• The matrix G has:

one column for each pixel (one per unknown pixel after projection)
one row for each neighbor-edge joining two pixels
a 1 and a –1 in each row (some with just 1 or zero after projection)

• The matrix A = GTG has:
one row and column for each (unknown) pixel

• Away from constraints, GTG implements a convolution with a 
discrete Laplacian filter

no surprise this is a second derivative: applied derivative twice

19

min x

T

Ax� 2x

T

As + s

T

As (1)

and we will call the above energy Q(x)
Given that A is defined as A = G

T

G, which is more or less the application
of the gradient twice, it corresponds to the second derivative of the image, often
called the Laplacian � = d

2

dx

2 + d

2

dy

2 . In the discrete world of digital images, the
Laplacian is the convolution by

2

4
0 �1 0
�1 4 �1
0 �1 0

3

5

We can minimize the above equation by setting its derivative with respect
to the unknown image x as zero.

d

dx

�
x

T

Ax� 2x

T

As + s

T

As

�
= 2Ax� 2As (2)

which leads to the linear system

Ax = As (3)

In conclusion, the problem of seamlessly pasting a source image into a region
can be reduced to the solution of a big linear system Ax = b where A is the
convolution by the Laplacian operator and b is the Laplacian of the source
image. In what follows, we will solve this system using gradient descent and
conjugate gradient.

The beauty of this assignment is that we will never need to create the matrix
A or represent our image as a 1D vector. We will keep the image representation
we know and love, and all we need from A is the ability to apply it to a x that
is an image. That is, we simply need to be able to convolve an image by the
Laplacian kernel.

In what follows, we will expose the numerical solvers in terms of Matrix-
vector notations Ax = b. But in your implementation, you will deal with images
and convolution. For this, you first need to implement basic linear algebra
operations for images.

3.2 Image dot product and convolution

The dot product between two vectors is the sum of the product of their coordi-
nates. For example, (x, y, z) · (x0

, y

0
, z

0) = xx

0 + yy

0 + zz

0 This is the same for
images: take the sum of the pairwise products between all the values for all the
pixels and channels of the two images.

Write a function dotIm(im1, im2) that returns the dot product between
the two images. The output should be a single scalar, just like any decent
dot product. Make sure you use bumpy array operations such as sum to make
everything fast.

3
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Euler-Lagrange
• Analogous conversion to square system in 2D continuous case

• Euler-Lagrange equations give a solution to this variational 
problem; in this case they work out to

reads “laplacian f equals divergence g”
• This is Poisson’s equation, which explains the use of the word 

“Poisson” to describe this class of methods
don’t need this, computationally; just solve the discrete least squares 
system, which is easier than discretizing the Poisson equation.

20

min
f

krf � ~gk2

r2f = r · ~g f |B = f⇤subject to

f |B = f⇤subject to



Intuition
• In 1D; just linear interpolation!
• Locally, if the second derivative was not zero, this would 

mean that the first derivative is varying, which is bad 
since we want (∇ f)2 to be minimized

• Note that, in 1D: by setting f'', we leave two degrees of 
freedom. This is exactly what we need to control the 
boundary condition at x1 and x2

x1 x2



In 2D: membrane interpolation 

x1 x2

Not as 
simple
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Solution methods
• The matrix A is square, sparse, and positive definite

• Direct solve
just form the matrix and solve it—fine for smaller problems

• Steepest descent
a simple-minded iterative method

• Conjugate gradients
a cleverer and much faster iterative method

• Preconditioned conjugate gradients
CG can be greatly sped up for larger problems

23
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Turn Ax=b into a minimization problem
• Minimization is more logical to analyze iteration (gradient ascent/descent)
• Quadratic form       

– c can be ignored because we want to minimize
• Intuition: 

– the solution of a linear system is always the intersection of n hyperplanes
– Take the square distance to them
– A needs to be positive-definite so that we have a nice parabola with a minimum, not 

maximum



slide by Frédo D
urand, M

IT

Gradient of the quadratic form

since

And since A is symmetric 

Not surprising: we turned Ax=b 
into the quadratic minimization & vice versa

(if A is not symmetric, conjugate gradient finds solution for 

–Not our image gradient!
–Multidimensional gradient 

(as many dim as rows in matrix)
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Steepest descent/ascent
• Pick 

residual 
(negative 
gradient) 
direction
–Ax(i)-b

Gradient direction

Grad
ien

t d
ire

ctio
n
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Steepest descent/ascent
• Pick 

residual 
(negative 
gradient) 
direction
–Ax(i)-b

• Find 
optimum 
in this 
direction

Gradient direction

Grad
ien

t d
ire

ctio
n

Energy along the gradient direction
x(0) x(1)
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Convergence
• A little slow: not fully there yet after 1000 iterations
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Behavior of gradient descent
• Zigzag or goes straight depending if we’re lucky

–Ends up doing multiple steps in the same direction
Unlucky Lucky
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Our residuals
• times 10
• We zigzag between the two same checkerboard patterns
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Conjugate Gradient method
• Naive iterative solver: Zigzag

–Ends up doing multiple steps in the same direction
• Conjugate gradient: make sure never go twice in the 

same direction
–Don’t go exactly along gradient direction

Green: 
   standard 
   iterations
Red: 
   conjugate 
   gradient

http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg

http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg
http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg
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Conjugate Gradient method
• Naive iterative solver: Zigzag

–Ends up doing multiple steps in the same direction
• Conjugate gradient: make sure never go twice in the 

same direction
–Don’t go exactly along gradient direction

Green: 
   standard 
   iterations
Red: 
   conjugate 
   gradient

http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg

function [x] = conjgrad(A,b,x0)  
    r = b - A*x0;
    w = -r;
    z = A*w;
    a = (r'*w)/(w'*z);
    x = x0 + a*w;
    B = 0;
    for i = 1:size(A);
       r = r - a*z;
       if( norm(r) < 1e-10 )
            break;
       B = (r'*z)/(w'*z);
       w = -r + B*w;
       z = A*w;
       a = (r'*w)/(w'*z);
       x = x + a*w;

Good news: the code is simple

http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg
http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg


slide by Frédo D
urand, M

IT

Conjugate gradient
• Smarter choice of direction

–Ideally, step directions should be orthogonal to one 
another (no redundancy)

–But tough to achieve
–Next best thing: make them A-orthogonal (conjugate)

That is, orthogonal when transformed by √A
• Turn the ellipses into circles
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Convergence of CG
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Residuals and direction
• times 10, displayed at 10fps

ri

di
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Compared to gradient descent

gradient 
descent

ri

diconjugate 
gradient
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Preconditioners
• When solving Ax = b it’s equivalent to solve MAx = Mb

• If M = A–1 the problem becomes a lot easier
• If M at least converts A into a better conditioned matrix, it can 

greatly accelerate CG convergence
• Need a matrix we can efficiently solve systems with
• For Poisson problems on images, hierarchical preconditioners 

work well, particularly ones adapted to the problem

36

it is called the stiffness matrix.) For the one-dimensional first or-
der problem, A is tridiagonal, while for the two-dimensional prob-
lem, it is multi-banded with 5 non-zero entries per row. We call b
the weighted data vector. Minimizing the above quadratic form is
equivalent to solving the sparse linear system

Ax= b. (8)

3 Direct and iterative techniques

The solution of sparse positive definite (SPD) linear systems of
equations breaks down into two major classes of algorithms: direct
and iterative.

Direct methods use sparse matrix representations together with sta-
ble factorization algorithms such as LU (lower-upper) or Cholesky
decomposition to obtain sparse symmetric factor matrices for which
forward and backward substitution can be efficiently performed
[Duff et al. 1986]. Unfortunately, for two-dimensional problems,
the factored matrices suffer from fill-in, i.e., the zero entries sep-
arating the main diagonal band and the off-diagonal bands (which
result when the 2D variables are placed in raster order) get replaced
with non-zero values. Furthermore, direct solvers, being sequen-
tial in nature, are not directly amenable to data-parallel execution
on GPUs.

Iterative relaxation algorithms such as gradient descent, successive
over-relaxation (SOR), and conjugate gradient descent minimize
the quadratic energy function (7) using a series of steps that suc-
cessively refine the solution by reducing its energy [Saad 2003].
Basic iterative algorithms can be accelerated using a variety of tech-
niques, including multigrid, hierarchical basis preconditioning, and
tree-based preconditioning.

Multigrid Multigrid methods operate on a pyramid and alternate
between solving the problem on the original (fine) level and pro-
jecting the error to a coarser level where the lower-frequency com-
ponents can be reduced [Briggs et al. 2000; Saad 2003]. This alter-
nation between fine and coarse levels can be extended recursively
by attacking the coarse level problem with its own set of inter-level
transfers, which results in the commonly used V-cycle and W-cycle
algorithms [Briggs et al. 2000].

While multigrid techniques are provably optimal for simple homo-
geneous problems, their performance degrades as the problem be-
comes more irregular. Algebraic multigrid solvers (AMG), which
locally adapt the interpolation functions to the local structure of the
coefficient matrix, can be more effective in these cases [Briggs et al.
2000; Saad 2003]. However, to our knowledge, AMG solvers have
not previously been applied to computer graphics problems. The
techniques we develop are related to AMG (as we discuss later), al-
though we use preconditioned conjugate gradient as our basic algo-
rithm rather than multigrid, since it can compensate for the imper-
fect coarsening that is endemic in most real-world problems [Saad
2003].

Hierarchical basis preconditioning An alternative approach to
solving sparse multi-dimensional relaxation problems also draws
its inspiration from multi-level techniques. However, instead of
solving a series of multi-resolution sub-problems interspersed with
inter-level transfers, preconditioned conjugate gradient uses the
multi-level hierarchy to precondition the original system, i.e., to
make the search directions more independent and better scaled.
These techniques were first developed in the numerical analysis
community by Yserentant [1986] and applied to computer vision
problems by Szeliski [1990]. More recent versions using different







 

 

 

 

 

Figure 3: Multiresolution pyramid with half-octave (quincunx sam-
pling (odd levels are colored gray for easier visibility). Hierarchi-
cal basis function control variables are shown as black dots.

basis functions (such as wavelets) and some amount of local adap-
tation have been proposed by Pentland [1994], Yaou and Chang
[1994], Gortler and Cohen [1995], and Lai and Vemuri [1997].

The basic idea is to replace the original nodal variables x =
[ f0 . . . fn−1] with a set of hierarchical variables y that lie on a multi-
resolution pyramid, which has been sub-sampled so that it has the
same number of samples as the original problem (Figure 3). Be-
cause some of these new variables have larger bases (influence re-
gions), the solver can take larger low-frequency steps as it itera-
tively searches for the optimal solution.

To convert between the hierarchical (multi-resolution) and nodal
bases, we use a set of local interpolation steps,

x= Sy= S1S2 · · ·SL−1y. (9)

The columns of S can be interpreted as the hierarchical basis
functions corresponding to the nodal variables [Yserentant 1986;
Szeliski 1990]. In the wavelet community, this operation is called
the lifting scheme for second generation wavelets [Schröder and
Sweldens 1995; Sweldens 1997].

The form of the individual interlevel interpolation functions Sl is
usually similar to that used in multigrid, e.g., linear interpolation
for one-dimensional problems and bilinear interpolation for two-
dimensional problems. Figure 4 shows a set of hierarchical bases
that correspond to using uniform linear interpolation at each stage.

Hierarchical basis preconditioning often outperforms multigrid re-
laxation on the kind of non-uniform scattered data interpolation
problems that arise in low-level vision [Szeliski 1990]. However,
as more levels of preconditioning are used, the performance starts
to degrade once the hierarchical bases become larger than the “nat-
ural” local spacing of the data. This is due to the fact that the
bases are not properly adapted to particular interpolation problem
at hand. While attempts have been made to take into account both
the strength of the data constraints [Lai and Vemuri 1997] and local
discontinuities [Szeliski 1990; Zhang et al. 2002], the question still
remains whether one can derive an optimal set of hierarchical basis
functions, or at least a more principled way to adapt them to the
local structure of the underlying problem.

4 One-dimensional problems

The basic idea in using a hierarchical basis is to interpolate the so-
lution obtained with a coarser level approximation and to then add
a local correction term. However, what if we were given the exact
solution at the coarser level? Could we then perfectly predict the
solution at the finer level?

[Szeliski 2006]

conj. grad. HBF (L= 3) LAHBF

iter = 1

iter = 5

Figure 7: Simple two-dimensional discontinuous interpolation
problem. The two rows show the solution after the first and fifth
iterations, and the three columns show regular conjugate gradient,
hierarchical basis preconditioning (3 levels), and LAHBF precon-
ditioning. Note how conjugate gradient hardly makes any progress,
while regular HBFs over-smooth the solution.

6 Experimental results

To evaluate the performance of our new algorithm, we have
compared it to regular conjugate gradient descent, regular (non-
adaptive) hierarchical basis preconditioning, and three different
variants of incomplete factorization (ILU0, MILU, and RILU with
ω = 0.5). Figure 7 shows a simple 2D interpolation problem that
consists of interpolating a set of 4 sparse constraints on a square
grid with a tear halfway across the bottom edge. As you can see,
conjugate gradient hardly makes any progress, even after 20 itera-
tions. Regular hierarchical basis preconditioning starts off strong,
but after 5 iterations, it has not yet accurately modeled the discon-
tinuity. Locally adaptive hierarchical basis preconditioning, on the
other hand, achieves a visually acceptable solution in a single iter-
ation.

Figure 8 shows a plot of the RMS error (relative to the minimum en-
ergy solution, expressed in gray levels) for all of these algorithms.
As you can see, LAHBF significantly outperforms all previously
published algorithms, which can also be verified by looking at the
semi-log plots of the error curves [Szeliski 2006].

We next evaluate the performance of our algorithm on a number of
computer graphics applications.

Colorization Colorization is the process of propagating a small
number of color strokes to a complete gray-scale image, while
attempting to preserve discontinuities in the image [Levin et al.
2004a]. As such, is it a perfect match to the controlled-continuity
interpolators developed in this paper. The actual smoothness term
being minimized in [Levin et al. 2004a] involves differences be-
tween a pixel’s value and the average of its eight neighbors. As
such, it is not a first-order smoothness term and is not directly
amenable to our acceleration technique. Instead, we replace the
term used in [Levin et al. 2004a] with a simpler term, i.e., we set
the horizontal and vertical smoothness strengths inversely propor-
tional to the horizontal and vertical grayscale gradients.

Figure 1 visually shows the result of running our algorithm, as well
as conventional preconditioned conjugate gradient on the sparse
set of color strokes shown in Figure 1a. As you can see, conju-
gate gradient hardly makes any progress, even after 20 iterations,
while LAHBF preconditioned conjugate gradient converges in just
a few iterations. Figure 9 shows the convergence of these algo-
rithms (RMS error in the reconstructed chrominance signals) as a
function of the number of iterations.

0

5

10

15

20

25

30

35

40

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Iteration

RM
S 

Er
ro

r

L=0

L=1

L=2

L=3

L=4

ILU0

RILU

MILU

LAHBF

0.01

0.1

1

10

100

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Iteration

RM
S 

Er
ro

r

L=0

L=1

L=2

L=3

L=4

ILU0

RILU

MILU

LAHBF

Figure 8: Error plot for the simple two-dimensional problem. The
LAHBF preconditioned solver converges in just a few iterations,
while regular HBFs converge more slowly and require manual se-
lection of the number of levels for best performance. The MILU
algorithm performs better than non-adapted bases, but still signifi-
cantly underperforms the new algortihm.

Poisson (gradient domain) blending Poisson blending is a
technique originally developed to remove visual artifacts due to
strong intensity or color differences when a cutout is pasted into
a new background [Pérez et al. 2003]. It has since been extended
to non-linear variants [Levin et al. 2004b], as well as applied to
image stitching, where it is used to reduce visual discontinuities
across image seams [Agarwala et al. 2004]. Poisson blending relies
on reconstructing an image that matches, in a least-squares sense, a
gradient field that has been computed from the various images that
contribute to the final mosaic.

Figure 10 shows an original two-image stitch where blending has
been applied. The left image shows the unblended result. The
middle image shows the label field, indicating where each pixel
is drawn from. The right image shows the blended result, obtained
using just a few iteration of LAHBF preconditioned conjugate gra-
dient. (Notice that a slight seam is still visible, because the contrast
is not properly matched across images. This suggest that blending
in the log-luminance domain might be more appropriate.) Figure 10
also shows the corresponding error plots. As before, we see that
LAHBF converges in just a handful of steps. In these examples,
rather than selecting a single pixel as a hard constraint to remove
the overall shift ambiguity, we used a weak constraint towards the
unblended original image.

Tone mapping Our final graphics application is gradient do-
main high dynamic range compression [Fattal et al. 2002]. In this
technique, the gradients of a log-luminance function are first com-
puted and then compressed through a non-linearity (Figure 11a–b),
A compressed log-luminance function is then reconstructed from
these gradients. Figure 11c shows the sparse set of constraints used
to clamp the dark and light values, Figure 11d shows the recon-
structed log-luminance function, and Figure 11e shows the con-
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Figure 1: A series of five photographs. The exposure is increasing from left (1/1000 of a second) to right (1/4 of a second).

play devices. In this section we provide a brief review of previous
work. More detailed and in-depth surveys are presented by DiCarlo
and Wandell [2001] and Tumblin et al. [1999].
Most HDR compression methods operate on the luminance

channel or perform essentially the same processing independently
in each of the RGB channels, so throughout most of this paper we
will treat HDR maps as (scalar) luminance functions.
Previous approaches can be classified into two broad groups: (1)

global (spatially invariant) mappings, and (2) spatially variant op-
erators. DiCarlo and Wandell [2001] refer to the former as TRCs
(tone reproduction curves) and to the latter as TROs (tone repro-
duction operators); we adopt these acronyms for the remainder of
this paper.
The most naive TRC linearly scales the HDR values such that

they fit into a canonic range, such as [0,1]. Such scaling preserves
relative contrasts perfectly, but the displayed image may suffer se-
vere loss of visibility whenever the dynamic range of the display
is smaller than the original dynamic range of the image, and due
to quantization. Other common TRCs are gamma correction and
histogram equalization.
In a pioneering work, Tumblin and Rushmeier [1993] describe a

more sophisticated non-linear TRC designed to preserve the appar-
ent brightness of an image based on the actual luminances present in
the image and the target display characteristics. Ward [1994] sug-
gested a simpler linear scale factor automatically determined from
image luminances so as to preserve apparent contrast and visibil-
ity around a particular adaptation level. The most recent and most
sophisticated, to our knowledge, TRC is described by Ward Larson
et al. [1997]. They first describe a clever improvement to histogram
equalization, and then show how to extend this idea to incorporate
models of human contrast sensitivity, glare, spatial acuity, and color
sensitivity effects. This technique works very well on a wide variety
of images.
The main advantage of TRCs lies in their simplicity and compu-

tational efficiency: once a mapping has been determined, the image
may be mapped very quickly, e.g., using lookup tables. However,
such global mappings must be one-to-one and monotonic in order to
avoid reversals of local edge contrasts. As such, they have a funda-
mental difficulty preserving local contrasts in images where the in-
tensities of the regions of interest populate the entire dynamic range
in a more or less uniform fashion. This shortcoming is illustrated
in the middle image of Figure 2. In this example, the distribution of
luminances is almost uniform, and Ward Larson’s technique results
in a mapping, which is rather similar to a simple gamma correction.
As a result, local contrast is drastically reduced.
Spatially variant tone reproduction operators are more flexible

than TRCs, since they take local spatial context into account when
deciding how to map a particular pixel. In particular, such operators
can transform two pixels with the same luminance value to different
display luminances, or two different luminances to the same display
intensity. This added flexibility in the mapping should make it pos-
sible to achieve improved local contrast.
The problem of high-dynamic range compression is intimately

related to the problem of recovering reflectances from an image
[Horn 1974]. An image I(x,y) is regarded as a product

I(x,y) = R(x,y) L(x,y),

where R(x,y) is the reflectance and L(x,y) is the illuminance at each
point (x,y). The function R(x,y) is commonly referred to as the
intrinsic image of a scene. The largest luminance variations in an
HDR image come from the illuminance function L, since real-world
reflectances are unlikely to create contrasts greater than 100:12.
Thus, dynamic range compression can, in principle, be achieved
by separating an image I to its R and L components, scaling down
the L component to obtain a new illuminance function L̃, and re-
multiplying:

Ĩ(x,y) = R(x,y) L̃(x,y).

Intuitively, this reduces the contrast between brightly illuminated
areas and those in deep shadow, while leaving the contrasts due to
texture and reflectance undistorted. Tumblin et al. [1999] use this
approach for displaying high-contrast synthetic images, where the
material properties of the surfaces and the illuminance are known
at each point in the image, making it possible to compute a per-
fect separation of an image to various layers of lighting and surface
properties.
Unfortunately, computing such a separation for real images is

an ill posed problem [Ramamoorthi and Hanrahan 2001]. Conse-
quently, any attempt to solve it must make some simplifying as-
sumptions regarding R, L, or both. For example, homomorphic
filtering [Stockham 1972], an early image enhancement technique,
makes the assumption that L varies slowly across the image, in con-
trast to R that varies abruptly. This means that R can be extracted by
applying a high-pass filter to the logarithm of the image. Exponenti-
ating the result achieves simultaneous dynamic range compression
and local contrast enhancement. Similarly, Horn [1974] assumes
that L is smooth, while R is piecewise-constant, introducing infi-
nite impulse edges in the Laplacian of the image’s logarithm. Thus,
L may be recovered by thresholding the Laplacian. Of course, in
most natural images the assumptions above are violated: for ex-
ample, in sunlit scenes illuminance varies abruptly across shadow
boundaries. This means that L also has high frequencies and intro-
duces strong impulses into the Laplacian. As a result, attenuating
only the low frequencies in homomorphic filtering may give rise
to strong “halo” artifacts around strong abrupt changes in illumi-
nance, while Horn’s method incorrectly interprets sharp shadows
as changes in reflectance.
More recently, Jobson et al. [1997] presented a dynamic range

compression method based on a multiscale version of Land’s
“retinex” theory of color vision [Land and McCann 1971]. Retinex
estimates the reflectances R(x,y) as the ratio of I(x,y) to its low-
pass filtered version. A similar operator was explored by Chiu
et al. [1993], and was also found to suffer from halo artifacts and
dark bands around small bright visible light sources. Jobson et al.
compute the logarithm of the retinex responses for several low-pass
filters of different sizes, and linearly combine the results. The lin-
ear combination helps reduce halos, but does not eliminate them
entirely. Schlick [1994] and Tanaka and Ohnishi [1997] also exper-
imented with spatially variant operators and found them to produce
halo artifacts.
Pattanaik and co-workers [1998] describe an impressively com-

prehensive computational model of human visual system adaptation
2For example, the reflectance of black velvet is about 0.01, while that of

snow is roughly 0.93.

Figure 2: Belgium House: An HDR radiance map of a lobby com-
pressed for display by our method (top), the method ofWard Larson
et al. (middle) and the LCIS method (bottom).

and spatial vision for realistic tone reproduction. Their model en-
ables display of HDR scenes on conventional display devices, but
the dynamic range compression is performed by applying different
gain-control factors to each bandpass, which also results in halos
around strong edges. In fact, DiCarlo and Wandell [2001], as well
as Tumblin and Turk [1999] demonstrate that this is a fundamental
problem with any multi-resolution operator that compresses each
resolution band differently.

In order to eradicate the notorious halo artifacts Tumblin and
Turk [1999] introduce the low curvature image simplifier (LCIS) hi-
erarchical decomposition of an image. Each level in this hierarchy
is generated by solving a partial differential equation inspired by
anisotropic diffusion [Perona and Malik 1990] with a different dif-
fusion coefficient. The hierarchy levels are progressively smoother
versions of the original image, but the smooth (low-curvature) re-
gions are separated from each other by sharp boundaries. Dynamic
range compression is achieved by scaling down the smoothest ver-
sion, and then adding back the differences between successive lev-
els in the hierarchy, which contain details removed by the simpli-
fication process. This technique is able to drastically compress the
dynamic range, while preserving the fine details in the image. How-
ever, the results are not entirely free of artifacts. Tumblin and Turk
note that weak halo artifacts may still remain around certain edges
in strongly compressed images. In our experience, this technique
sometimes tends to overemphasize fine details. For example, in the
bottom image of Figure 2, generated using this technique, certain
features (door, plant leaves) are surrounded by thin bright outlines.
In addition, the method is controlled by no less than 8 parameters,
so achieving an optimal result occasionally requires quite a bit of
trial-and-error. Finally, the LCIS hierarchy construction is compu-
tationally intensive, so compressing a high-resolution image takes
a substantial amount of time.

3 Gradient domain HDR compression
Informally, our approach relies on the widely accepted assumptions
[DiCarlo and Wandell 2001] that the human visual system is not
very sensitive to absolute luminances reaching the retina, but rather
responds to local intensity ratio changes and reduces the effect of
large global differences, which may be associated with illumination
differences.
Our algorithm is based on the rather simple observation that any

drastic change in the luminance across a high dynamic range im-
age must give rise to large magnitude luminance gradients at some
scale. Fine details, such as texture, on the other hand, correspond
to gradients of much smaller magnitude. Our idea is then to iden-
tify large gradients at various scales, and attenuate their magnitudes
while keeping their direction unaltered. The attenuation must be
progressive, penalizing larger gradients more heavily than smaller
ones, thus compressing drastic luminance changes, while preserv-
ing fine details. A reduced high dynamic range image is then re-
constructed from the attenuated gradient field.
It should be noted that all of our computations are done on the

logarithm of the luminances, rather than on the luminances them-
selves. This is also the case with most of the previous methods
reviewed in the previous section. The reason for working in the log
domain is twofold: (a) the logarithm of the luminance is a (crude)
approximation to the perceived brightness, and (b) gradients in the
log domain correspond to ratios (local contrasts) in the luminance
domain.
We begin by explaining the idea in 1D. Consider a high dynamic

range 1D function. We denote the logarithm of this function by
H(x). As explained above, our goal is to compress large magnitude
changes in H, while preserving local changes of small magnitude,
as much as possible. This goal is achieved by applying an appro-
priate spatially variant attenuating mapping Φ to the magnitudes of
the derivatives H ′(x). More specifically, we compute:

G(x) = H ′(x) Φ(x).

Note that G has the same sign as the original derivative H ′ every-
where, but the magnitude of the original derivatives has been al-
tered by a factor determined by Φ, which is designed to attenuate
large derivatives more than smaller ones. Actually, as explained in
Section 4, Φ accounts for the magnitudes of derivatives at different
scales.

[Fattal 2002]
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Efficient Gradient-Domain Compositing Using Quadtrees
Aseem Agarwala

Adobe Systems, Inc.

Abstract
We describe a hierarchical approach to improving the efficiency of
gradient-domain compositing, a technique that constructs seamless
composites by combining the gradients of images into a vector field
that is then integrated to form a composite. While gradient-domain
compositing is powerful and widely used, it suffers from poor scal-
ability. Computing an n pixel composite requires solving a linear
system with n variables; solving such a large system quickly over-
whelms the main memory of a standard computer when performed
for multi-megapixel composites, which are common in practice. In
this paper we show how to perform gradient-domain compositing
approximately by solving an O(p) linear system, where p is the to-
tal length of the seams between image regions in the composite; for
typical cases, p is O(

√
n). We achieve this reduction by transform-

ing the problem into a space where much of the solution is smooth,
and then utilize the pattern of this smoothness to adaptively sub-
divide the problem domain using quadtrees. We demonstrate the
merits of our approach by performing panoramic stitching and im-
age region copy-and-paste in significantly reduced time and mem-
ory while achieving visually identical results.

1 Introduction
Many recent algorithms for combining regions of multiple pho-
tographs or videos into a seamless composite operate in the gra-
dient domain. Rather than copying absolute colors from the source
images into a composite, these algorithms instead copy color gradi-
ents between source pixels and their immediate neighbors to form a
composite vector field. A composite image (or video) whose gradi-
ents best match this composite vector field in a least squares sense
is then reconstructed by solving a linear system (equivalent to the
discretized Poisson equation) whose variables are the colors of each
pixel [Pérez et al. 2003].

This technique is one of the most widely used algorithms in com-
putational photography and video; unfortunately, however, it does
not scale well to the multi-megapixel digital imagery common to-
day. Solving a linear system on the order of the number of pixels
quickly becomes prohibitive both in terms of time and space. Thus,
despite the broad applicability of gradient-domain techniques, this
poor scalability has limited their adoption in digital photography
software. 1

In this paper, we describe a simple and novel approach to gradient-
domain compositing that greatly reduces the scale of the prob-
lem. We show how to approximately compute an n pixel gradient-

http://agarwala.org/efficient gdc/

Figure 1 A 17-megapixel panorama shot with a hand-held camera.
(First row) Panorama created by simply copying colors from the source
images. Notice the subtle vertical seams caused by variations in expo-
sure. (Second row) The gradient-domain composite. (Third row) A vi-
sualization of the difference between the first two images. The key ob-
servation of our work is that this difference exhibits intricate detail near
the seams between image regions, but becomes progressively smoother
away from these seams. (Fourth row) To take advantage of this smooth-
ness, we subdivide the domain using a quadtree such that maximum
subdivision occurs along the seams. (Fifth row) The result computed in
this reduced space, which can be computed much more efficiently, is vi-
sually identical to the full gradient-domain solution. The numerical error
is shown in Table 1. Images courtesy of Tobias Oberlies.

domain composite by solving a linear system whose number of
variables is O(p) rather than n, where p is the total length of the
seams between the image regions in the composite. This length will
be much smaller than n, and can be shown to be O(

√
n) for typ-

ical cases. Solving this reduced system greatly reduces time and
memory requirements yet achieves results that are visually identi-
cal. We achieve this efficiency increase by observing that the differ-
ence between a simple color composite and its associated gradient-
domain composite is largely smooth (Figure 1), and the pattern of
this smoothness can be predicted a priori. We thus solve for this
difference, and adaptively subdivide the domain using a quadtree
(a hierarchical spatial data structure [Samet 1990]) so that smoother
areas of the solution are interpolated using fewer variables.

Efficient algorithms for solving the Poisson equation such as multi-
grid methods [Saad 2003] are well-studied and can be adapted to the
GPU [Bolz et al. 2003]. Szeliski [2006] recently introduced a pre-
conditioner that greatly accelerates the convergence of an iterative

1An exception is Adobe Photoshop’s Healing Brush [Georgiev 2004],
which is efficient because it operates on only small regions of an image at
any one time.

1

[Agarwala 2007]
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• Rather than replacing the gradient entirely, blend the gradients 
using a max-like operation

Therefore, inside Ω, the additive correction f̃ is a membrane inter-
polant of the mismatch ( f ∗− g) between the source and the desti-
nation along the boundary ∂Ω. This particular instance of guided
interpolation is used for seamless cloning in Section 3.

Discrete Poisson solver The variational problem (3), and the
associated Poisson equation with Dirichlet boundary conditions (4),
can be discretized and solved in a number of ways.

For discrete images the problem can be discretized naturally us-
ing the underlying discrete pixel grid. Without loss of generality,
we will keep the same notations for the continuous objects and their
discrete counterparts: S, Ω now become finite point sets defined on
an infinite discrete grid. Note that S can include all the pixels of an
image or only a subset of them. For each pixel p in S, let Np be
the set of its 4-connected neighbors which are in S, and let 〈p,q〉
denote a pixel pair such that q ∈ Np. The boundary of Ω is now
∂Ω = {p ∈ S\Ω : Np ∩Ω &= /0}. Let fp be the value of f at p. The
task is to compute the set of intensities f |Ω =

{
fp, p ∈ Ω

}
.

For Dirichlet boundary conditions defined on a boundary of ar-
bitrary shape, it is best to discretize the variational problem (3) di-
rectly, rather than the Poisson equation (4). The finite difference
discretization of (3) yields the following discrete, quadratic opti-
mization problem:

min
f |Ω

∑
〈p,q〉∩Ω%= /0

( fp − fq − vpq)2, with fp = f ∗p , for all p ∈ ∂Ω, (6)

where vpq is the projection of v( p+q
2 ) on the oriented edge [p,q],

i.e., vpq = v( p+q
2 ) · !pq. Its solution satisfies the following simulta-

neous linear equations:

for all p ∈ Ω, |Np| fp − ∑
q∈Np∩Ω

fq = ∑
q∈Np∩∂Ω

f ∗q + ∑
q∈Np

vpq. (7)

When Ω contains pixels on the border of S, which happens for in-
stance when Ω extends to the edge of the pixel grid, these pixels
have a truncated neighborhood such that |Np| < 4. Note that for
pixels p interior to Ω, that is, Np ⊂ Ω, there are no boundary terms
in the right hand side of (7), which reads:

|Np| fp − ∑
q∈Np

fq = ∑
q∈Np

vpq. (8)

Equations (7) form a classical, sparse (banded), symmetric,
positive-definite system. Because of the arbitrary shape of bound-
ary ∂Ω, we must use well-known iterative solvers. Results shown in
this paper have been computed using either Gauss-Seidel iteration
with successive overrelaxation or V-cycle multigrid. Both methods
are fast enough for interactive editing of medium size color image
regions, e.g., 0.4 s. per system on a Pentium 4 for a disk-shaped re-
gion of 60,000 pixels. As demonstrated in [Bolz et al. 2003], multi-
grid implementation on a GPU will provide a solution for much
larger regions.

3 Seamless cloning

Importing gradients The basic choice for the guidance field v
is a gradient field taken directly from a source image. Denoting
by g this source image, the interpolation is performed under the
guidance of

v = ∇g, (9)

and (4) now reads

∆ f = ∆g over Ω, with f |∂Ω = f ∗|∂Ω. (10)

Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-
tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

As for the numerical implementation, the continuous specifica-
tion (9) translates into

for all 〈p,q〉, vpq = gp −gq, (11)

which is to be plugged into (7).
The seamless cloning tool thus obtained ensures the compliance

of source and destination boundaries. It can be used to conceal un-
desirable image features or to insert new elements in an image, but
with much more flexibility and ease than with conventional cloning,
as illustrated in Figs. 2-4. From the perspective of user input, most
tasks will simply require very loose lasso selections, as shown for
instance in Fig. 3. However, when features of the source have to
be aligned with corresponding features in the destination, as in the
fence example in Fig. 2 (bottom row) or the face example in Fig.
4 (top row), the positioning of the source and destination regions
must be more precise. Finally, in situations where seamless cloning
involves mostly pieces of texture, as in the face touch-up example
in Fig. 2 (top row) the texture swap example in Fig. 4 (bottom row)
applying repeatedly broad brush strokes is the more effective way.

Up to global changes induced by the interpolation process, the
full content of the source image is retained . In some circumstances,
it is desirable to transfer only part of the source content. The most
common instance of this problem is the transfer of the intensity
pattern from the source, not the color. A simple solution is to turn
the source image monochrome beforehand, see Fig. 5.

Mixing gradients With the tool described in the previous sec-
tion, no trace of the destination image f ∗ is kept inside Ω. However,
there are situations where it is desirable to combine properties of f ∗
with those of g, for example to add objects with holes, or partially
transparent ones, on top of a textured or cluttered background.

An example is shown in Fig.6, in which a text layer is to be
peeled off the source image and applied to the destination image,
without the need for complex selection operations. One possible
approach is to define the guidance field v as a linear combination
of source and destination gradient fields but this has the effect of
washing out the textures, see Fig. 6.

However, the Poisson methodology allows non-conservative
guidance fields to be used, which gives scope to more compelling
effect. At each point of Ω, we retain the stronger of the variations
in f ∗ or in g, using the following guidance field:

for all x ∈ Ω, v(x) =
{

∇ f ∗(x) if |∇ f ∗(x)| > |∇g(x)|,
∇g(x) otherwise. (12)

315

[Pérez et al. 2003]



slide by Frédo D
urand, M

IT

Manipulate the gradient
• Mix gradients of g & f: take the max
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Covariant derivatives & Photoshop
• Photoshop Healing brush
• Developed independently from Poisson editing by Todor 

Georgiev (Adobe)

From Todor Georgiev's slides http://photo.csail.mit.edu/posters/todor_slides.pdf


