CS6640 Computational Photography

11. Gradient Domain Image Processing

Problems with direct copy/paste

AIL

sources/destinations

cloning

From Perez et al. 2003

• Gradient: derivative of a function $R^n \rightarrow R$ (n = 2 for images)

$$\nabla f = \begin{bmatrix} \frac{df}{dx} & \frac{df}{dy} \end{bmatrix} = \begin{bmatrix} f_x & f_y \end{bmatrix}$$

- Note it turns a function $\mathbb{R}^2 \to \mathbb{R}$ into a function $\mathbb{R}^2 \to \mathbb{R}^2$
- Most such functions are not the derivative of anything!
- How do you if some function g is the derivative of something? in 2D, simple: mixed partials are equal (g is conservative)

$$g_x^y = g_y^x$$
 because $g = \nabla f$ and $f_{xy} = f_{yx}$

A nonconservative gradient?

M.C. Escher Ascending and Descending 1960 Lithograph 35.5 x 28.5 cm

Cornell CS6640 Fall 2012

- 1. Construct a vector field that we wish was the gradient of our output image
- 2. Look for an image that has that gradient
- 3. That won't work, so look for an image that has approximately the desired gradient

Gradient domain image processing is all about clever choices for (1) and efficient algorithms for (3)

Solution: paste gradient

sources/destinations

hacky visualization of gradient

seamless cloning

Given desired gradient g on a domain D, and some constraints on a subset B of the domain

$$\vec{g}: D \to \mathbb{R}^2 \qquad B \subset D \qquad f^*: B \to \mathbb{R}$$

Find a function *f* on *D* that fits the constraints and has a gradient close to *g*

$$\min_{f} \|
abla f - ec{g} \|_2$$
 subject to $f|_B = f^*$

Since the gradient is a linear operator, this is a (constrained) linear least squares problem.

Discretization

- Of course images are made up of finitely many pixels
- Use discrete derivative [-1 1] to approximate gradient there are other choices but this works fine here
- Minimize sum-squared rather than integral-squared difference sum is over edges joining neighboring pixels
- Result is a matrix that maps f to its derivative

Handling constraints

To deal with constraints just leave out the constrained pixels

$$f = \Pi_B^T \mathbf{f}^* + \Pi_{\bar{B}}^T \mathbf{f}'$$

$$\min_{\mathbf{f}'} \left\| G \left(\Pi_B^T \mathbf{f}^* + \Pi_{\bar{B}}^T \mathbf{f}' \right) - \mathbf{g} \right\|$$

$$\min_{\mathbf{f}'} \left\| \begin{bmatrix} G \Pi_{\bar{B}}^T \end{bmatrix} \mathbf{f}' - \begin{bmatrix} \mathbf{g} - \Pi_B^T \mathbf{f}^* \end{bmatrix} \right\|$$

$$\int_{\mathbf{f}'} \int_{\mathbf{f}'} \mathbf{f} \qquad \mathbf{h}$$

$$\operatorname{augmented}_{\text{right hand side}}$$

 The result is an unconstrained problem to be solved for the unknown variables in f'

one column per unknown pixel; one row per neighbor edge (any zero rows can be left out)

Discrete 1D example: minimization

orange: pixel outside the mask red: source pixel to be pasted blue: boundary conditions (in background)

Discrete 1D example: minimization

Discrete 1D example: minimization

1D example: minimization


```
Min [(f_2-f_1)-1]^2
+ [(f_3-f_2)-(-1)]^2
+ [(f_4-f_3)-2]^2
+ [(f_5-f_4)-(-1)]^2
+ [(f_6-f_5)-(-1)]^2
```


$$\begin{split} & \text{Min } [(f_2 - f_1) - 1]^2 & = > f_2^2 + 49 - 14f_2 \\ & + [(f_3 - f_2) - (-1)]^2 & = > f_3^2 + f_2^2 + 1 - 2f_3f_2 + 2f_3 - 2f_2 \\ & + [(f_4 - f_3) - 2]^2 & = > f_4^2 + f_3^2 + 4 - 2f_3f_4 - 4f_4 + 4f_3 \\ & + [(f_5 - f_4) - (-1)]^2 & = > f_5^2 + f_4^2 + 1 - 2f_5f_4 + 2f_5 - 2f_4 \\ & + [(f_6 - f_5) - (-1)]^2 & = > f_5^2 + 4 - 4f_5 \end{split}$$

1D example: big quadratic

1D example: derivatives

Min $(f_2^2 + 49 - 14f_2)$

 $+ f_{3}^{2} + f_{2}^{2} + 1 - 2f_{3}f_{2} + 2f_{3} - 2f_{2}$ $+ f_{4}^{2} + f_{3}^{2} + 4 - 2f_{3}f_{4} - 4f_{4} + 4f_{3}$ $+ f_{5}^{2} + f_{4}^{2} + 1 - 2f_{5}f_{4} + 2f_{5} - 2f_{4}$ $+ f_{5}^{2} + 4 - 4f_{5})$ Solution Denote it Q

é by Frédo Durand, MIT

1D example: derivatives

Min $(f_2^2+49-14f_2$ + $f_3^2+f_2^2+1-2f_3f_2+2f_3-2f_2$ + $f_4^2+f_3^2+4-2f_3f_4-4f_4+4f_3$ + $f_5^2+f_4^2+1-2f_5f_4+2f_5-2f_4$ + $f_5^2+4-4f_5$)

Frédo Durand, MIT

$$\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 16$$

$$\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2 + 2f_3 - 2f_4 + 4$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 - 4 + 2f_4 - 2f_5 - 2$$

$$\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2 + 2f_5 - 4$$

$$\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 16$$

$$\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2 + 2f_3 - 2f_4 + 4$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 - 4 + 2f_4 - 2f_5 - 2$$

$$\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2 + 2f_5 - 4$$

$$\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 16 = 0$$

$$\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2 + 2f_3 - 2f_4 + 4 = 0$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 - 4 + 2f_4 - 2f_5 - 2 = 0$$

$$\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2 + 2f_5 - 4 = 0$$

$$\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 16 = 0$$

$$\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2 + 2f_3 - 2f_4 + 4 = 0$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 - 4 + 2f_4 - 2f_5 - 2 = 0$$

$$\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2 + 2f_5 - 4 = 0$$

$$\frac{dQ}{df_2} = 2f_2 + 2f_2 - 2f_3 - 16 = 0$$

$$\frac{dQ}{df_3} = 2f_3 - 2f_2 + 2 + 2f_3 - 2f_4 + 4 = 0$$

$$\frac{dQ}{df_4} = 2f_4 - 2f_3 - 4 + 2f_4 - 2f_5 - 2 = 0$$

$$\frac{dQ}{df_5} = 2f_5 - 2f_4 + 2 + 2f_5 - 4 = 0$$

$$= > \begin{pmatrix} 4 & -2 & 0 & 0 \\ -2 & 4 & -2 & 0 \\ 0 & -2 & 4 & -2 \\ 0 & 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix} = \begin{pmatrix} 16 \\ -6 \\ 6 \\ 2 \end{pmatrix}$$

1D example recap

Matrix structure

$$\begin{pmatrix} 4 & -2 & 0 & 0 \\ -2 & 4 & -2 & 0 \\ 0 & -2 & 4 & -2 \\ 0 & 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix} = \begin{pmatrix} 16 \\ -6 \\ 6 \\ 2 \end{pmatrix}$$

• That matrix is G^TG; least squares system reads

and the solution to $(G^TG)f = G^Tb$ is the minimizer. (This system is the normal equations for the LLS problem.)

Interesting that it looks like a second derivative...

Matrix structure

$$\begin{pmatrix} 4 & -2 & 0 & 0 \\ -2 & 4 & -2 & 0 \\ 0 & -2 & 4 & -2 \\ 0 & 0 & -2 & 4 \end{pmatrix} \begin{pmatrix} f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix} = \begin{pmatrix} 16 \\ -6 \\ 6 \\ 2 \end{pmatrix}$$

That matrix is G^TG; least squares system reads

$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & -1 \end{pmatrix} \begin{pmatrix} f_2 \\ f_3 \\ f_4 \\ f_5 \end{pmatrix} = \begin{pmatrix} 7 \\ -1 \\ 2 \\ -1 \\ -2 \end{pmatrix}$$

and the solution to $(G^T G)f = G^T b$ is the minimizer. (This system is the normal equations for the LLS problem.)

Interesting that it looks like a second derivative...

• The matrix G has:

one column for each pixel (one per unknown pixel after projection) one row for each neighbor-edge joining two pixels a 1 and a –1 in each row (some with just 1 or zero after projection)

• The matrix $A = G^T G$ has:

one row and column for each (unknown) pixel

 Away from constraints, G^TG implements a convolution with a discrete Laplacian filter

$$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 4 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

no surprise this is a second derivative: applied derivative twice

Euler-Lagrange

Analogous conversion to square system in 2D continuous case

$$\min_{f} \|\nabla f - \vec{g}\|_2 \quad \text{subject to} \quad f|_B = f^*$$

 Euler-Lagrange equations give a solution to this variational problem; in this case they work out to

$$\nabla^2 f = \nabla \cdot \vec{g}$$
 subject to $f|_B = f^*$

reads "laplacian f equals divergence g"

 This is Poisson's equation, which explains the use of the word "Poisson" to describe this class of methods

don't need this, computationally; just solve the discrete least squares system, which is easier than discretizing the Poisson equation.

Intuition

- In 1D; just linear interpolation!
- Locally, if the second derivative was not zero, this would mean that the first derivative is varying, which is bad since we want (∇ f)² to be minimized
- Note that, in 1D: by setting f'', we leave two degrees of freedom. This is exactly what we need to control the boundary condition at x₁ and x₂

In 2D: membrane interpolation

Not as simple

Solution methods

- The matrix A is square, sparse, and positive definite
- Direct solve

just form the matrix and solve it — fine for smaller problems

Steepest descent

a simple-minded iterative method

Conjugate gradients

a cleverer and much faster iterative method

Preconditioned conjugate gradients

CG can be greatly sped up for larger problems

Turn Ax=b into a minimization problem CSALL

- Minimization is more logical to analyze iteration (gradient ascent/descent)
- Quadratic form

$$f(x) = \frac{1}{2}x^T A x - b^T x + c$$

- c can be ignored because we want to minimize
- Intuition:
 - the solution of a linear system is always the intersection of n hyperplanes
 - Take the square distance to them
 - A needs to be positive-definite so that we have a nice parabola with a minimum, not maximum

Graph of quadratic form $f(x) = \frac{1}{2}x^TAx - b^Tx + c$. The minimum point of this surface is the solution to Ax = b. slide by Frédo Durand, MIT

Contours of the quadratic form. Each ellipsoidal curve has constant f(x).

Gradient of the quadratic form

 $f'(x) = \begin{bmatrix} \frac{\partial}{\partial x_1} f(x) \\ \frac{\partial}{\partial x_2} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{bmatrix} - \text{Not our image gradient!} \\ - \text{Multidimensional gradient} \\ \text{(as many dim as rows in matrix)}$

since
$$f(x) = \frac{1}{2}x^T A x - b^T x + c$$

 $f'(x) = \frac{1}{2}A^T x + \frac{1}{2}Ax - b$

And since A is symmetric

$$f'(x) = Ax - b$$

Not surprising: we turned Ax=binto the quadratic minimization & vice versa gradient points in the direction of steepest increase of f(x), and is orthogonal to the contour lines.

(if A is not symmetric, conjugate gradient finds solution for

$$x_{2}$$

 $\frac{1}{2}(A^T + A)x = b.$

Steepest descent/ascent

Pick
 residual
 (negative
 gradient)
 direction

 $-Ax_{(i)}-b$

Steepest descent/ascent

Pick
 residual
 (negative
 gradient)
 direction

 -Ax_(i)-b

at direction x_2 (a) (b) direc dient 150 x_1 f(x)100 6 50 $x_{(0)}$ •*x* $e_{(0)}$ $\frac{2.5}{x_1}^{5}$ $x_{2_{-2}}$ -2.5 6 x_2 (d)

Find
 optimum
 in this
 direction

Energy along the gradient direction slide by Frédo Durand, MIT

Convergence

• A little slow: not fully there yet after 1000 iterations

Behavior of gradient descent

Zigzag or goes straight depending if we're lucky

 Ends up doing multiple steps in the same direction
 Unlucky
 Lucky
 Lucky

Our residuals

- times 10
- We zigzag between the two same checkerboard patterns

Conjugate Gradient method

- Naive iterative solver: Zigzag
 - -Ends up doing multiple steps in the same direction
- Conjugate gradient: make sure never go twice in the same direction
 - -Don't go exactly along gradient direction

Green: standard iterations Red: conjugate gradient

http://en.wikipedia.org/wiki/Image:Conjugate gradient illustration.svg

Conjugate Gradient method

- Naive iterative solver: Zigzag
 - -Ends up doing multiple steps in the same direction
- Conjugate gradient: make sure never go twice in the same direction
 - -Don't go exactly along gradient direction

Green: standard iterations Red: conjugate gradient Good news: the code is simple

```
function [x] = conjgrad(A,b,x0)
    r = b - A*x0;
    w = -r;
    z = A*w;
    a = (r'*w)/(w'*z);
    x = x0 + a*w;
    B = 0;
    for i = 1:size(A);
       r = r - a*z;
       if (norm(r) < 1e-10)
            break;
       B = (r'*z)/(w'*z);
         = -r + B*w;
        = A*w;
       a = (r'*w)/(w'*z);
       x = x + a*w;
```

http://en.wikipedia.org/wiki/Image:Conjugate gradient illustration.svg

Conjugate gradient

Smarter choice of direction

- -Ideally, step directions should be orthogonal to one another (no redundancy)
- -But tough to achieve
- -Next best thing: make them A-orthogonal (conjugate) That is, orthogonal when transformed by \sqrt{A} $d_{(i)}^T A d_{(j)} = 0$
 - Turn the ellipses into circles

Figure 22: These pairs of vectors are A-orthogonal ... because these pairs of vectors are orthogonal.

Convergence of CG

Residuals and direction

• times 10, displayed at 10fps

Compared to gradient descent

gradient descent

conjugate gradient

Preconditioners

- When solving Ax = b it's equivalent to solve MAx = Mb
- If $M = A^{-1}$ the problem becomes a lot easier
- If *M* at least converts *A* into a better conditioned matrix, it can greatly accelerate CG convergence
- Need a matrix we can efficiently solve systems with
- For Poisson problems on images, hierarchical preconditioners work well, particularly ones adapted to the problem

Applications

Result (eye candy)

source/destination

cloning

[Pérez et al. 2003]

seamless cloning

sources

destinations

cloning

seamless cloning

Figure 2: **Concealment**. By importing seamlessly a piece of the background, complete objects, parts of objects, and undesirable artifacts can easily be hidden. In both examples, multiple strokes (not shown) were used.

Gradient domain HDR tone mapping

Cornell CS6640 Fall 2012

Gradient-domain mosaic assembly

Mixed seamless cloning

 Rather than replacing the gradient entirely, blend the gradients using a max-like operation

for all
$$\mathbf{x} \in \Omega$$
, $\mathbf{v}(\mathbf{x}) = \begin{cases} \nabla f^*(\mathbf{x}) & \text{if } |\nabla f^*(\mathbf{x})| > |\nabla g(\mathbf{x})|, \\ \nabla g(\mathbf{x}) & \text{otherwise.} \end{cases}$

[Pérez et al. 2003]

Manipulate the gradient

• Mix gradients of g & f: take the max

source/destination

seamless cloning

mixed seamless cloning

slide by Frédo Durand, MIT

Figure 8: **Inserting one object close to another**. With seamless cloning, an object in the destination image touching the selected region Ω bleeds into it. Bleeding is inhibited by using mixed gradients as the guidance field.

[Pérez et al. 2003]

(c) seamless cloning and destination averaged

(d) mixed seamless cloning

[Pérez et al. 2003]

Figure 6: **Inserting objects with holes**. (a) The classic method, color-based selection and alpha masking might be time consuming and often leaves an undesirable halo; (b-c) seamless cloning, even averaged with the original image, is not effective; (d) mixed seamless cloning based on a loose selection proves effective.

[Pérez et al. 2003]

swapped textures

Figure 7: **Inserting transparent objects**. Mixed seamless cloning facilitates the transfer of partly transparent objects, such as the rainbow in this example. The non-linear mixing of gradient fields picks out whichever of source or destination structure is the more salient at each location.

Covariant derivatives & Photoshop

- Photoshop Healing brush
- Developed independently from Poisson editing by Todor **Georgiev** (Adobe)

From Todor Georgiev's slides http://photo.csail.mit.edu/posters/todor slides.pdf