CS6640 Computational Photography

11. Gradient Domain Image Processing

© 2012 Steve Marschner



Problems with direct copy/paste ..

o
- -
P LS
: o -

.

sources/destinations

slide by Frédo Durand, MIT From Perez et al. 2003



Image gradient

- Gradient: derivative of a function R" = R (n = 2 for images)
d d
Vi=|£ &l =1 £

- Note it turns a function R?> = R into a function R? = R?
* Most such functions are not the derivative of anything!

- How do you if some function g is the derivative of something?
in 2D, simple: mixed partials are equal (g is conservative)

g: = gZ because g = V f and fo, = fyz
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A nonconservative gradient”

M.C. Escher

Ascending and Descending
1960

Lithograph

35.5x28.5cm
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Gradient: intuition
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Key gradient domain idea

1. Construct a vector field that we wish was the gradient of our
output image

2. Look for an image that has that gradient
3. That won’t work, so look for an image that has approximately
the desired gradient

Gradient domain image processing is all about clever choices for
(1) and efficient algorithms for (3)
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Solution: paste gradient

g R seamless cloning

sources/destinations  hacky visualization of gradient

slide by Frédo Durand, MIT



Problem setup

Given desired gradient g on a domain D, and some constraints on
a subset B of the domain

Gg:D — IR* B cCD f*:B— IR

Find a function f on D that fits the constraints and has a gradient
closetog

mfin ||Vf — §||2 subject to f|B — f*

Since the gradient is a linear operator, this is a (constrained)
linear least squares problem.
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Discretization

Of course images are made up of finitely many pixels

Use discrete derivative [-1 1] to approximate gradient
there are other choices but this works fine here

Minimize sum-squared rather than integral-squared difference
sum Is over edges joining neighboring pixels

Result is a matrix that maps f to its derivative

mfin HGTf — g{ subject to [Igf = f*
discrete  pixels listed  desired projection constrained
gradient as vector gradient that selects values

operator pixels in B
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Handling constraints

- To deal with constraints just leave out the constrained pixels
f=Tgf* +I5f
mm HG (HTf* -+ HTf')

IIllIl H [GHT] f'— g — Hgf*}

G without shorter augmented
constrained vector of right hand side

columns unknowns

* The result is an unconstrained problem to be solved for the
unknown variables in f’

one column per unknown pixel; one row per neighbor edge
(any zero rows can be left out)

Cornell CS6640 Fall 2012 10



LIN ‘pueidng opali4 Aq epl|s

Discrete 1D example: minimizatior:.

bounda
e Copy 6 to . Yy
5 +2'1
5
4 4
3 3
2 2 unknowns
1 1 2 7 7 7
0 0
0123456 7 0123456 7

orange: pixel outside the mask
red: source pixel to be pasted
blue: boundary conditions (in background)



LIN ‘pueidng opali4 Aq epl|s

Discrete 1D example: min

1Za

tioftir.

* Copy to

+2 -1

O = N W N U1 O
O - N W b~ U1 O

O 1 23456 7

2?77

| 1N

O 1 2345606 7




Discrete 1D example: minimizatior:.

LIN ‘pueidng opali4 Aq epl|s

* Copy to

+2 -1

-1 -1

+1

O = N W N U1 O
O - DD W M U1 O

0123456 7 0123456 7

+ [(f5-1,)-(-1)]?

+ [(f4-13)-2]° With
+ [(f5-f)-(-1)]? f,=6

+ [(fo-15)-(-1)]° fe=1




LIN ‘pueidng opali4 Aq epl|s

1D example: minimization
) COpy €55 +2 -1 to 6

4 +1 -1 - j

3 3

2 2

; |1 S '8N

O 1 23456 7

Min [(f,-f;)-1]°
+ [(f5-1,)-(-1)]*
+ [(f,-15)-2]

+ [(fs-f,)-(-1)]?
+ [(fo-f5)-(-1)]*

O 1 2345606 7



LIN ‘pueidng opali4 Aq epl|s

1D example: minimization
e Copy 6 to .
5 +2 -1 -
4 4
3 3
2 2 |
1 1 ?2 ?7 7 ?f
; ; 2 77
01234567 0123456 7
Min [(f,-f,)-1]? ==> {,2+49-14f,
+ [(£,-f5)-2]? ==> {2+f,2+4-21.f, -4f,+4f,
+ [(f5-f)-(-1)]? ==> f2+f,2+1-2ff, +2f.-2f,

H(Eef)-(D == 244




LIN ‘pueidng opali4 Aq epl|s

1D example: big quadratic

CSAIL

e Copy 6 to .
5 +2'1

5

4 4

3 3

2 2

0 0

1 23456 7 0123456 7

« Min (f22+48-14f2
+ £,2+1,2+1-21,f, +21,-2f,
+ £2+,2+4-21 .1, -4f +4f,
+ £ 2+ 2+1-21 1, +2f.-2f,
+ £2+4-4f.)
Denote it Q



1D example: derivatives
) COpy €55 +2 -1 to (53

4 4

3 3

2 2

; |1 S '8N

O 1 23456 7 O 1 23456 7
Min (f,2+49-14f,
+ £,24H,24+1-26,f, +2£,-2f,
+ £,2H,2+4-216,f, -4f,+4f,
+ £+ 21268, +26-21,
| + £2+4-48,)
zDenote it Q

LIN ‘pueidng opali4 Aq apl|s



1D example: derivatives
) COpy €53 +2 -1 to (53

4 4

3 3

2 2

; |1 S '8N

O 1 23456 7 O 1 23456 7

Min (f,2+49-14f,

D

LIN ‘pueidng opali4 Aq apl|s

+ £32+Hf,2+1-21,1f, +21;-2f,
+ £ 2+1,2+4-21,f, -4f +4f,
+ £2+f,2+1-21.f, +21.-21,
+ £2+4-41)

enote it Q

G =2fa+2f2 —2fs — 16

T2 =2f3—2f+2+2f3 —2fs +4
fbc—a:?f4—2f3—4+2f4—2f5—2

37222f5—2f4+2+2f5—



LIN ‘pueidng opali4 Aq epl|s

1D example: set derivatives to ZerG..

* Copy to

+2 -1

O = N W N U1 O
O - N W b~ U1 O

01234567 01234567
dﬁ_2f2‘|‘2f2—2f3—16
Gt =2fs—2fa+2+2f3—2fs+4
B =2f1—2fs—4+2f1—2f5 -2

S =2fs—2fs+2+2f5—4

5



1D example: set derivatives to ZerG..

to

* Copy

+2 -1

O = N W N U1 O
O - N W b~ U1 O

01 234586 7 O 1 2345 6 7
G =2fa+2fr—2f3—16 =0

SR =2fs—2fa+2+2fs-2f1+4 =0

A2 —2fy —2fs —44+2f1 —2fs —2 =()

dfa
R =2f—2fi+2+2fs —4=(

LIN ‘pueidng opali4 Aq epl|s



LIN ‘pueidng opali4 Aq epl|s

1D example: set derivatives to ZerG..

* Copy to

+2 -1

O = N W N U1 O
O - N W b~ U1 O

01234567 0123456 7
=2 +2f—-2f3-16 =0
SR =2fs—2fa+2+2fs-2f1+4 =0
jﬁ—2f4—2f3—4+2f4—2f5_2 =0

£ =2f5—2f4+2+2fs —4=0

F1S

——



LIN ‘pueidng opali4 Aq epl|s

1D example: set derivatives to ZerG..

* Copy to

+2 -1

O = N W N U1 O
O - N W b~ U1 O

O 1 23456 7 O 1 23456 7
dﬁ_2f2—|-2f2—2f3—16 =()
W —2fs—2fo+2+2f3—2fs+4 =0
3ﬁ—2f4—2f3—4+2f4—2f5—2 =

dQ _ _ _
=2fs —2f4 +2+2f5 O/ 42 _42 O2 8 \ /;2\ ( 1%\
_ _ : _

N0 oo 21 )\r) 2

5




1D example recap

* Copy

O - N W b~ U1 O

1

2 3456 7




Matrix structure

(420 0N (a0

4 —2 0 2 —6
2 4 f4 6

o0 o2 4 )\n) 2

- That matrix is G'G; least squares system reads

and the solution to (G'G)f = G'b is the minimizer. (This system is the
normal equations for the LLS problem.)

- Interesting that it looks like a second derivative...
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Matrix structure

(420 0N (a0

4 —2 0 2 —6
2 4 f4 6

o0 o2 4 )\n) 2

- That matrix is G'G; least squares system reads

(100 8\(&) (7

/3
0 -1 1 0
fa

0 -1 1
f5

\8 0 0 -1

and the solution to (G'G)f = G'b is the minimizer. (This system is the
normal equations for the LLS problem.)

- Interesting that it looks like a second derivative...

Cornell CS6640 Fall 2012



Matrix structure in 2D

 The matrix G has:

one column for each pixel (one per unknown pixel after projection)
one row for each neighbor-edge joining two pixels
a 1 and a -1 in each row (some with just 1 or zero after projection)

- The matrix A = G'G has:
one row and column for each (unknown) pixel

- Away from constraints, G'G implements a convolution with a
discrete Laplacian filter

0O -1 0
-1 4 -1
0O -1 0

NO surprise this is a second derivative: applied derivative twice

Cornell CS6640 Fall 2012 19



Euler-Lagrange

- Analogous conversion to square system in 2D continuous case

mfinHVf—ﬁHz subjectto f|p = [

- Euler-Lagrange equations give a solution to this variational
problem; in this case they work out to

V2f =V -g subjectto f|gp = f"

reads “laplacian f equals divergence g”

* This Is Poisson’s equation, which explains the use of the word
“Poisson” to describe this class of methods

don’t need this, computationally; just solve the discrete least squares
system, which is easier than discretizing the Poisson equation.

Cornell CS6640 Fall 2012 20



Intuition 2

* In 1D; just linear interpolation!

* Locally, if the second derivative was not zero, this would
mean that the first derivative is varying, which is bad

since we want (V )2 to be minimized

* Note that, in 1D: by setting 1'', we leave two degrees of
freedom. This is exactly what we need to control the
boundary condition at x; and x,



CSAIL

10N

membrane interpolati

In 2D




Solution methods

- The matrix A Is square, sparse, and positive definite

* Direct solve
just form the matrix and solve it—fine for smaller problems

- Steepest descent
a simple-minded iterative method

- Conjugate gradients
a cleverer and much faster iterative method

- Preconditioned conjugate gradients
CG can be greatly sped up for larger problems

Cornell CS6640 Fall 2012
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Turn Ax=b into a minimization problem@c%gfu

 Minimization is more logical to analyze iteration (gradient ascent/descent)

* Quadratic form Fa) = LI A PR b
— ¢ can be ignored because we v%'aut LU LLLLLLIZC

* Intuition:
— the solution of a linear system 1s always the intersection of n hyperplanes
— Take the square distance to them

— A needs to be positive-definite so that we have a nice parabola with a minimum, not
maximum

Graph of quadratic form f(z) = f2' Az — b’z + c. The
minimum point of this surface is the solution to Az = b.  Contours of the quadratic form. Each ellipsoidal curve has

| , constant f(x).
slide by Frédo Durand, MIT



Gradient of the quadratic form
o | :;g; | —Not our image gradient!
21 | —Multidimensional gradient
(as many dim as rows 1n matrix) ;
T
since f(z) = l:cTAzzz — bz +c 'z g V1, ;%%%%
- NN I 4 /

] ]

fllx) = ATz + Az — b ceeewrt 27/
2 2 v A

. . , e
And since A 1s symmetric PP e R
AN YRR RN
/ / YA/ VAR
f(x) = Az — b 7771111\

NOt SurprISIHg: w¢C tumed AX:b Gradient f'(z) of the quadratic form. For every x, the
lntO the quadl’atlc mlnlmlzathn & vice Versagrachent points in the direction of steepest increase of f ().

and 1s orthogonal to the contour lines.

(if A 1s not symmetric, conjugate gradient finds solution for % ( AT + A) r =b

LIN ‘pueidng opali4 Aq epl|s



Steepest descent/ascent
* Pick

residual

(negative r&t}:}j

!a{':‘:’(i :';’ 2 ’/ 400
osradient) g‘%ﬁj/ % 100 f (x)
o o éé v 0
direction '
—AX@i)-b

slide by Frédo Durand, MIT



Steepest descent/ascent

* Pick
residual
(negative
osradient)
direction

—AX@i)-b

. Find —
optimum
m thls. 60 R Gl CTTRR NN

direction \4\;\ ORI R,

2 B \ ~ \ \\\\\\ \ ~—— F /
~ R e

W2 04 06 NN

X0) X(1) A

Energy along the gradient direction

slide by Frédo Durand, MIT




* A little slow: not fully there yet atter 1000 iterations

slide by Frédo Durand, MIT



Behavior of gradient descent

» Zigzag or goes straight depending if we’re lucky
—Ends up doing multiple steps in the same direction
Unlucky Lucky

) I
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LIN ‘pueidng opali4 Aq epl|s

Conjugate Gradient method

* Naive iterative solver: Zigzag
—Ends up doing multiple steps in the same direction

* Conjugate gradient: make sure never go twice in the
same direction

—Don’t go exactly along gradient direction

Green:
standard
1terations

Red:

conjugate

& gradient
N g

http://en.wikipedia.org/wiki/lmage:Conjugate gradient illustration.svg



http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg
http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg

LIN ‘pueidng opali4 Aq epl|s

Conjugate Gradient method

* Naive iterative solver: Zigzag

—Ends up doing multiple steps in the same direction

* Conjugate gradient: make sure never go twice in the

same direction

—Don’t go exactly along gradient direction

\ 4

Green:
standard
1terations

Red:
conjugate
gradient

http://en.wikipedia.org/wiki/lmage:Conjugate gradient illustration.svg

Good news: the code 1s simple

function [x] = conjgrad(A,b,x0)
r = b - A*x0;

R

-y
N
O —
<

[ S T | I [ B |

Il
=
n
|_l
N
(0}
>

orm(r) < le-10 )

nmnnnn —~

¥ 0o N S W F- R


http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg
http://en.wikipedia.org/wiki/Image:Conjugate_gradient_illustration.svg

LIN ‘pueidng opali4 Aq epl|s

Conjugate gradient

e Smarter choice of direction

—Ideally, step directions should be orthogonal to one
another (no redundancy)

—But tough to achieve

—Next best thing: make them A-orthogonal (conjugate)

That 1s, orthogonal when transformed by VA 4l Ad(jy = 0

 Turn the ellipses into circles

I I

Figure 22: These pairs of vectors are A-orthogonal ... because these pairs of vectors are orthogonal.
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 times 10, displayed at 10fps

slide by Frédo Durand, MIT



gradient
descent

conjugate
gradient

slide by Frédo Durand, MIT



Preconditioners

If M = A~ the problem becomes a lot easier

When solving Ax = b it’s equivalent to solve MAx = Mb

Need a matrix we can efficiently solve systems with

work well, particularly ones adapted to the problem

coarse

/ [=4
y [=3
medium /.// / / \\ [=2

Cornell CS6640 Fall 2012

100 -

10 - %
1 T T T T T

If M at least converts A into a better conditioned matrix, it can
greatly accelerate CG convergence

For Poisson problems on images, hierarchical preconditioners

—1=0
—— L=t
L=2
L=3
L=4

RMS Error

0.1 1

0.01 -

[Szeliski 2006]

Iteration

—ILUO
RILU

—MILU

— LAHBF

36
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source/destination cloning [Perez et al. 2003 seamless cloning
= SC«¢ 51 34



CSAIL

sources destinations cloning seamless cloning

[Pérez et al. 2003]

1IN ‘pue



Figure 2: Concealment. By importing seamlessly a piece of the
background, complete objects, parts of objects, and undesirable ar-

tifacts can easily be hidden. In both examples, multiple strokes (not
shown) were used.

[Pérez et al. 2003]




Gradient domain HDR tone mapping

Cornell CS6640 Fall 2012 [Fattal 2002]



Gradient-domain mosaic assembly

Cornell CS6640 Fall 2012 [Agarwala 2007]



Mixed seamless cloning

- Rather than replacing the gradient entirely, blend the gradients
using a max-like operation

(

Vi(x) if [VfA(x)] > [Veg(x)],

for all x € Q, v(x) = < Vg(x) otherwise.

\

[Pérez et al. 2003]

Cornell CS6640 Fall 2012 43



LIN ‘pueidng opali4 Aq epl|s

Manipulate the gradient

CSAIL

* Mix gradients of g & f: take the max

source/destination seamless cloning mixed seamless cloning

Figure 8: Inserting one object close to another. With seamless
cloning, an object in the destination image touching the selected
region £2 bleeds into it. Bleeding 1s inhibited by using mixed gradi-

ents as the guidance field.
[Pérez et al. 2003]



LIN ‘pueidng opali4 Aq epl|s

CSAIL

[Pérez et al. 2003]

(c) seamless cloning and destination av-
eraged

(d) mixed seamless cloning

Figure 6: Inserting objects with holes. (a) The classic method,
color-based selection and alpha masking might be time consuming
and often leaves an undesirable halo; (b-c) seamless cloning, even
averaged with the original image, 1s not effective; (d) mixed seam-
less cloning based on a loose selection proves effective.
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[Pérez et al. 2003]




source destination

Figure 7: Inserting transparent objects. Mixed seamless cloning
facilitates the transter of partly transparent objects, such as the rain-
bow in this example. The non-linear mixing of gradient fields picks
out whichever of source or destination structure 1s the more salient
at each location.

LIN ‘pueidng opali4 Aq epl|s



LIN ‘pueidng opali4 Aq epl|s

Covariant derivatives & Photoshop

 Photoshop Healing brush

* Developed independently from Poisson editing by Todor
Georgiev (Adobe)




