CS6640 Computational Photography

5. Digital image sensing

Fundamental process

Detect photons via photoelectric effect

incident photon may be absorbed and create a free electron efficiency of conversion = Quantum Efficiency (%)

Collect electrons in a potential well

think of this as collecting "photon rain" in little "rain gauges"

Measure charge to produce digital pixel value

charges are small, measured in thousands of electrons amplified to produce a measurable voltage, then digitized

Charge-coupled device (CCD) arrays

- Array of photodiodes; charge stored in potential wells
- Readout process

charges are shifted across array, then amplified amplified on chip but digitized by separate hardware

Full frame, frame transfer, interline transfer

different architectures for hiding pixels from light

3

Verical CCD (Photosites)

Reaior

CMOS image sensors

Sensors made in CMOS process

same process used for CPUs and other VLSI chips analog and digital processing on the same die with sensor

Typical arrangement: Active Pixel Sensor (APS)

each pixel has its own charge amplifier pixels read out by row/column addressing single ADC circuit

Other arrangements

ADC per pixel (but uses a lot of area)

Dark current

temperature-dependent thermal generation of electrons

Shot noise

from Poisson process of photoelectron generation

Reset noise

cancel using "correlated double sampling"

Readout noise

sum of various noise sources in analog electronics

Quantization noise

error due to rounding to the nearest pixel value in ADC

Fixed pattern noise

spatial noise due to variations in components

photons

E

quantum # photons efficiency χE

CCD vs. CMOS

CCDs: older, first technology in high end

- multiple, high supply voltages required; high power consumption
- can't integrate processing on die; always need multiple chips
- + easier to achieve low noise
- + better fill factors
- + Iow fixed-pattern noise because all the work is being done by one amplifier

CMOS: newer, currently taking over

- much sophistication required to achieve low noise prone to fixed-pattern noise because of per-pixel amplifiers prone to readout noise because of area-constrained amplifiers
- extra circuitry consumes area, decreases fill factor
- + fast, random access readout
- + single, low supply voltage; low power consumption
- + can integrate processing on die to make single-chip cameras

2nd Half 2011 CCD/CMOS Area Image Sensor Market Analysis

1.8.2. Revenues

			Marf	tet Share	in 2010-	- 2011 Fo	recast (F	Revenues)			
5		1. and 1. and 1.	<					- A			Un	it: USSM
al a la company	Total				CCD				CMOS			
	2010		2011F		2010		2011F		2010		2011F	
·马莱(中亚)		%		%		%		- %		%		%
Sony	1,934.8	33.8%	2,663.9	37.3%	841.3	51.8%	650.8	56.4%	1,093.5	26.7%	2,013.1	33.6%
Aptina	391.4	6.8%	440.4	6.2%					391.4	9.6%	440.4	7.3%
Panasonic	523.1	9.1%	458.0	6.4%	420.6	25.9%	281.6	24.4%	102.5	2.5%	176.4	2.9%
OmniVision	582.6	10.2%	615.3	8.6%				-	582.6	14.2%	615.3	10.3%
Samsung	581.7	10.2%	844.7	11.8%					581.7	14.2%	844.7	14.1%
Canon	611.4	10.7%	874.3	12.2%					611.4	14.9%	874.3	14.6%
Sharp	323.1	5.6%	185.2	2.6%	311.8	19.2%	183.2	15.9%	11.3	0.3%	2.0	0.0%
Nikon	169.0	3.0%	240.7	3.4%					169.0	4.1%	240.7	4.0%
Toshiba	232.3	4.1%	321.4	4.5%					232.3	5.7%	321.4	5.4%
ST Micro	171.9	3.0%	223.1	3.1%	141				171.9	4.2%	223.1	3.7%
Hynix	70.1	1.2%	126.0	1.8%					70.1	1.7%	126.0	2.1%
FujiFilm	7.8	0.1%	14.8	0.2%	7.8	0.5%	1.3	0.1%		0.0%	13.5	0.2%
Others	119.6	2.1%	137.3	1.9%	43.3	2.7%	36.1	3.1%	76.3	1.9%	101.2	1.7%
Total	5,718.8	100.0%	7,145.1	100.0%	1,624.8	100.0%	1,153.0	100.0%	4,094.0	100.0%	5,992.1	100.0%

* The revenues above were calculated based on shipments of application devices, which do not match the actual image sensor shipment revenues.

* The volumes of sensors for Chinese non-brand camera phones are not included in the figures above.

DSC Market Trend

Microlenses

- Increase fill factor by focusing incoming light
- Produce angularly varying sensitivity

no free lunch-larger area comes with smaller solid angle

Can interact badly with wide-angle lenses

for this reason many DSC lenses are designed to be at least partially telecentric on the image side

Front illuminated

conventional design has interconnects and circuitry in front causes reduced fill factor and QE (particularly for blue)

Back illuminated

originally an esoteric product for astronomy

grind away back of chip and illuminate the photosensors directly

now becoming popular in small-format CMOS sensors

Summary Specification

KAI-08050 Image Sensor

DESCRIPTION

The KAI-08050 Image Sensor is an 8-megapixel CCD in a 4/3" optical format. Based on the TRUESENSE 5.5 micron Interline Transfer CCD Platform, the sensor features broad dynamic range, excellent imaging performance, and a flexible readout architecture that enables use of 1, 2, or 4 outputs. The sensor supports full resolution readout up to 16 frames per second, while a Region of Interest (ROI) mode supports partial readout of the sensor at even higher frame rates. A vertical overflow drain structure suppresses image blooming and enables electronic shuttering for precise exposure control.

The sensor is available with the TRUESENSE Sparse Color Filter Pattern, a technology which provides a 2x improvement in light sensitivity compared to a standard color Bayer part.

The sensor shares common pin-out and electrical configurations with other devices based on the TRUESENSE 5.5 micron Interline Transfer Platform, allowing a single camera design to support multiple members of this sensor family.

FEATURES

- Bayer Color Pattern, TRUESENSE Sparse Color Filter Pattern, and Monochrome configurations
- Progressive scan readout
- Flexible readout architecture
- High frame rate
- High sensitivity
- Low noise architecture
- Excellent smear performance
- Package pin reserved for device identification

APPLICATIONS

- Industrial Imaging
- Medical Imaging
- Security

Cornell CS6640 Fall 2012

Parameter	Typical Value		
Architecture	Interline CCD; Progressive Scan		
Total Number of Pixels	3364 (H) x 2520 (V)		
Number of Effective Pixels	3320 (H) x 2496 (V)		
Number of Active Pixels	3296 (H) x 2472 (V)		
Pixel Size	5.5 μm (H) x 5.5 μm (V)		
Active Image Size	18.13 mm (H) x 13.60 mm (V) 22.66 mm (diag) 4/3" optical format		
Aspect Ratio	4:3		
Number of Outputs	1, 2, or 4		
Charge Capacity	20,000 electrons		
Output Sensitivity	34 µV/e ⁻		
Quantum Efficiency Pan (-ABA, -PBA) R, G, B (-CBA, -PBA)	50% (500 nm) 31%, 42%, 43% (620, 540, and 470 nm)		
Read Noise (f= 40MHz)	12 electrons rms		
Dark Current Photodiode VCCD	7 electrons/s 100 electrons/s		
Dark Current Doubling Temp Photodiode VCCD	7 ℃ 9 ℃		
Dynamic Range	64 dB		
Charge Transfer Efficiency	0.999999		
Blooming Suppression	> 300 X		
Smear	-100 dB		
lmage Lag	< 10 electrons		
Maximum Pixel Clock Speed	40 MHz		
Maximum Frame Rates Quad Output Dual Output Single Output	16 fps 8 fps 4 fps		
Package	68 pin PGA		
Cover Glass	AR Coated, 2 Sides		

All parameters are specified at T = 40 °C unless otherwise noted

Device Description

ARCHITECTURE

1/2.5-Inch 5Mp CMOS Digital Image Sensor

MT9P031

For the latest data sheet, refer to Aptina's Web site: www.aptina.com

Features

- High frame rate
- Superior low-light performance
- Low dark current
- Global reset release, which starts the exposure of all rows simultaneously
- Bulb exposure mode, for arbitrary exposure times
- Snapshot mode to take frames on demand
- · Horizontal and vertical mirror image
- Column and row skip modes to reduce image size without reducing field-of-view (FOV)
- Column and row binning modes to improve image quality when resizing
- Simple two-wire serial interface
- Programmable controls: gain, frame rate, frame size, exposure
- Automatic black level calibration
- On-chip phase-locked loop (PLL)

Applications

- High resolution network cameras
- Wide FOV cameras
- 720P–60 fps cameras
- Dome cameras with electronic pan, tile, and zoom
- Hybrid video cameras with high resolution stills
- Detailed feature extraction for smart cameras

Ordering Information

Table 1:Available Part Numbers

Part Number	Description			
MT9P031I12STC	48-pin iLCC 7 deg			
MT9P031I12STD	48-pin iLCC ES demo			
MT9P031I12STH	48-pin iLCC headboard			

Table 2:	Key Perform	ance Parameters				
Parameter		Value				
Optical for	mat	1/2.5-inch (4:3)				
Active ima	ger size	5.70mm(H) x 4.28mm(V)				
		7.13mm diagonal				
Active pixe	els	2592H x 1944V				
Pixel size		2.2 x 2.2μm				
Color filter	array	RGB Bayer pattern				
		Global reset release (GRR),				
Shutter ty	pe	Snapshot only				
		Electronic rolling shutter (ERS)				
Maximum	data rate/	96 Mp/s at 96 MHz (2.8V I/O)				
master clo	ck	48 Mp/s at 48 MHz (1.8V I/O)				
	Full resolution	Programmable up to 14 fps				
Frame	VGA	Programmable up to 53 fps				
rate	(640 x 480, with					
	binning)					
ADC resolu	ition	12-bit, on-chip				
Responsivi	ty	1.4 V/lux-sec (550nm)				
Pixel dyna	mic range	70.1dB				
SNR _{MAX}		38.1dB				
Supply	I/O	1.7-3.1V				
Voltage	Digital	1.7–1.9V (1.8V nominal)				
	Analog	2.6–3.1V (2.8V nominal)				
Power con	sumption	381mW at 15 fps full resolution				
Operating	temperature	–30°C to +70°C				
Packaging		48-pin iLCC, die				

The 5Mp CMOS image sensor features Aptina's breakthrough low-noise CMOS imaging technology that achieves CCD image quality (based on signal-to-noise ratio and low-light sensitivity) while maintaining the inherent size, cost, and integration advantages of CMOS.

General Description

The Aptina[®] MT9P031 is a 1/2.5-inch CMOS activepixel digital image sensor with an active imaging pixel array of 2592H x 1944V. It incorporates sophisticated camera functions on-chip such as windowing, column and row skip mode, and snapshot mode. It is programmable through a simple two-wire serial interface.

TOSHIBA

Leading Innovation >>>

Product Brief

T4K05 8-Megapixel BSI CMOS Image Sensor

Highlights

- Major worldwide producer of image sensor technology with more than 25 years of experience.
- Offers advanced BSI technology and ultracompact chip scale camera module packaging technology.
- Utilizes a proprietary square-pixel design that enables exceptionally high-quality images with low-power consumption.
- Offers a wide range of sensors from VGA to 14-megapixels with higher resolutions in development.
- Makes ongoing investments in capacity and its robust supply chain is a result of tight procurement relationships and experience in designing, developing and manufacturing image sensors.

Description

The T4K05 is an 8-megapixel image sensor with backside illumination (BSI) for better light sensitivity and absorption. The image sensor has an optical format of ¼ inch with each pixel measuring 1.12 x 1.12 micrometers. The sensor enables a module as small as 7.5 mm x 7.5 mm and a high speed frame rate of 30 frames-per-second in full resolution mode and 1080p with low power consumption. The TK405 integrates a high dynamic range (HDR) function enabling both bright and dark areas to be captured resulting in a clear and crisp image.

Applications

• Cellular and Smartphone

Features

- 1/4" 8M resolution (1.12 micrometers)
- Backside Illumination (BSI)
- Progressive scan
- I²C interface

T4K05 System Block Diagram

- Sub-sampling: Vertical and horizontal $\frac{1}{2^{\prime\prime}},\,\frac{1}{4^{\prime\prime}}$
- Built-in Phase Lock Loop (PLL) with Dual PLL (second PLL for MIPI[®] output)
- High Dynamic Range (HDR)
- Lens shading correction
- Defect pixel correction
- Picture flip (horizontal and vertical)
- · Context switch
- Built-in VCM driver
- Built-in temperature sensor
- Standby mode, Power down mode
- OTP (4k-bits one-time memory)
- Built-in regulator (1.2V)

Sensing color

- Frame sequential
- 3-chip
- Color filter array (CFA)
- Multilayer (foveon)

- shot sequentially through R, G, B filters
- simultaneous projection provided good color, but available printing technology did not
- digital restoration lets us see them in full glory...

worth a look: http://www.loc.gov/ exhibits/empire/

17

Sergey Prokudin-Gorsky, Alim Khan, emir of Bukhara (1911)

Sergey Prokudin-Gorsky, Pinkhus Karlinskii, Supervisor of the Chernigov Floodgate (1919)

Technicolor

Wizard of Oz (1939)

3 negatives exposed simultaneously

via beam splitter and filters

large, heavy cameras; cumbersome printing process

Single-strip color film

Color film is an RGB sensing device

intricate stack of layers, each sensitive to one band and transparent to others

Information stored in negative images

Wavelength (nm)

3-chip cameras

- high-quality video cameras
- prism & dichroic mirrors split the image into 3 colors, each routed to a separate sensor (typically CCD)
- no light loss, as compared to filters (which absorb light)
 expensive, and complicates lens design

Foveon stacked sensor

 longer wavelengths penetrate deeper into silicon, so arrange a set of vertically stacked detectors

- top gets mostly blue, middle gets green, bottom gets red
- no control over spectral responses, so requires processing
- fewer moiré artifacts than color filter arrays + demosaicing
 but possibly worse noise performance, especially in blue

Foveon stacked sensor

- longer wavelengths penetrate deeper into silicon, so arrange a set of vertically stacked detectors
 - top gets mostly blue, middle gets green, bottom gets red
 - no control over spectral responses, so requires processing
- fewer moiré artifacts than color filter arrays + demosaicing
 but possibly worse noise performance, especially in blue

Bayer pattern

Sony RGB+E better color

Kodak RGB+C more dynamic range

Bayer pattern

Sony RGB+E better color

Kodak RGB+C more dynamic range

Why more green pixels than red or blue?

Bayer pattern

Sony RGB+E better color

Kodak RGB+C more dynamic range

- Why more green pixels than red or blue?
 - because green pixels come closest to measuring luminance

Bayer pattern

Sony RGB+E better color

Kodak RGB+C more dynamic range

Why more green pixels than red or blue?

- because green pixels come closest to measuring luminance
- human eye cares mostly about detailed luminance, not so much for chromaticity

Small fan at Stanford women's soccer game (Canon 1D III)

25

Small fan at Stanford women's soccer game (Canon 1D III)

25

Small fan at Stanford women's soccer game (Canon 1D III)

25

slide by Marc Levoy, Stanford

26

Before demosaicing (dcraw -d)

slide by Marc Levoy, Stanford

27

Before demosaicing (dcraw -d)

slide by Marc Levoy, Stanford 27

Demosaicing

- linear interpolation
 - average of the 4 nearest neighbors of the same color
- cameras typically use more complicated scheme
 try to avoid interpolating across contrasty edges
 demosaicing is often combined with denoising, sharpening...
- due to demosaicing, 2/3 of your data is "made up"!

Green