Probability Density Under Transformation

Pramook Khungurn

September 25, 2015

1 Introduction

In creating an algorithm that samples points from some domain, a problem that always comes up is the following:

Let A and B be sets,
$p_{A}(\cdot)$ be a probability density on A, and
f be a function from A to B.
If one samples x from A according to p_{A}, then what is the probability density of $f(x)$?
This document discusses the solution to the above problem and its application to construction of sampling algorithm.

2 One-Dimensional Case

2.1 The Main Theorem

We first start with the simplest case where A and B are both subsets of the real line \mathbb{R}.
Let $x \in A$. The number $p_{A}(x)$ means that, in the infinitesimal interval $[x, x+\delta x)$, there exists $p_{A}(x) \delta x$ amount of "probability mass." Here, δx is a "differential quantity" such that $(\delta x)^{2}=0$.

Assume that f is continuous and infinitely differentiable. The function f sends the interval $[x, x+\delta x)$ to the interval $[f(x), f(x+\delta x))$. By Taylor expansion,

$$
f(x+\delta x)=f(x)+f^{\prime}(x) \delta x+O\left((\delta x)^{2}\right)=f(x)+f^{\prime}(x) \delta x .
$$

So, the resuling interval is $\left[f(x), f(x)+f^{\prime}(x) \delta x\right)$, which as width $\left|f^{\prime}(x)\right| \delta x$.
This means that the mass $p_{A}(x) \delta x$ gets distributed to an interval of width $f^{\prime}(x) \delta x$. As a result:

$$
\text { Density at point } \mathrm{f}(\mathrm{x})=\frac{p_{A}(x) \delta x}{\left|f^{\prime}(x)\right| \delta x}=\frac{p_{A}(x)}{\left|f^{\prime}(x)\right|}
$$

This density is defined only when $f^{\prime}(x) \neq 0$, which means that f is one-to-one in a neighborhood of x. As such, we have the following theorem.

Theorem 1. Let A and B be subsets of \mathbb{R}, p_{A} be a probability density on $A, f: A \rightarrow B$ be continuous and differentiable and $f^{\prime}(x) \neq 0$ for all $x \in A$. The induced probability density $p_{B}(\cdot)$ arisen from the process of sampling x according to p_{A} and then computing $f(x)$ is given by:

$$
p_{B}(f(x))=\frac{p_{A}(x)}{\left|f^{\prime}(x)\right|}
$$

2.2 The Inversion Method

The above theorem can be used to create sampling algorithm for any integrable density function on the real line from a uniformly random sample from the interval $[0,1)$.

In this situation, $A=[0,1)$ and $p_{A}(x)=1$ for all $x \in A$. The density $p_{B}(\cdot)$ is given to us. We want to find function $f: A \rightarrow B$ such that, for any $x \in A$:

$$
p_{B}(f(x))=\frac{p_{A}(x)}{f^{\prime}(x)}=\frac{1}{\left|f^{\prime}(x)\right|}
$$

Multiply both sides by $f^{\prime}(x)$, we have:

$$
p_{B}(f(x))\left|f^{\prime}(x)\right|=1
$$

Let P_{B} be the CDF of p_{B} :

$$
P_{B}(y)=\int_{-\infty}^{y} p_{B}(t) \mathrm{d} t .
$$

We have that:

$$
\left\{P_{B}(f(x))\right\}^{\prime}=p_{B}(f(x)) f^{\prime}(x)=p_{B}(f(x))\left|f^{\prime}(x)\right|
$$

given that f is an increasing function. Let us assume that f is increasing for now. We have that

$$
\left\{P_{B}(f(x))\right\}^{\prime}=1
$$

Integrating both sides from $t=0$ to $t=x$, we have:

$$
\begin{aligned}
\int_{0}^{x}\left\{P_{B}(f(t))\right\}^{\prime} \mathrm{d} t & =\int_{0}^{x} 1 \mathrm{~d} t \\
P_{B}(f(x))-P_{B}(f(0)) & =x
\end{aligned}
$$

With the assumption that $f(0)$ should correspond to the lowest number in the set B, we can safely set $P_{B}(f(0))=0$. So,

$$
\begin{aligned}
P_{B}(f(x)) & =x \\
f(x) & =P_{B}^{-1}(x) .
\end{aligned}
$$

The CDF is an increasing function, so is its inverse. Moreover, $P_{B}^{-1}(0)$ maps to the lowest number in the set B. So, it is a valid choice for f.

In other words, to generate a point on the real line with probability distribution p_{B}, simply apply the inverse of the CDF to a point x picked uniformly randomly from the interval $[0,1)$.

2.3 Sampling from the Exponential Distribution

We present a simple application of the inversion method. The exponential distribution with parameter λ is defined on $[0, \infty)$ with

$$
p(x)=\lambda e^{-\lambda x}
$$

The CDF is given by:

$$
P(x)=1-e^{-\lambda x}
$$

So,

$$
P^{-1}(y)=\ln (1-y)
$$

Hence, to sample x acoording to the exponential distribution, we simply set:

$$
x:=\ln (1-\xi)
$$

where ξ is a randomly and uniformly sampled from the interval $[0,1)$.

3 Multi-Dimensional Case

3.1 The Main Theorem

Let $A, B \subseteq \mathbb{R}^{n}$, and $p_{A}(\cdot)$ be a probability density on A. Let \mathbf{f} be given by:

$$
\mathbf{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left[\begin{array}{c}
f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
\vdots \\
f_{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{array}\right]
$$

be a function from A to B. The induced probability distribution p_{B} arisen from the process of sampling a point $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ according to p_{A} can then computing $\mathbf{f}(\mathbf{x})$ can again be computed by finding the volume of the image of the interval

$$
\left[x_{1}, x_{1}+\delta x_{1}\right) \times\left[x_{2}, x_{2}+\delta x_{2}\right) \times \cdots \times\left[x_{n}, x_{n}+\delta x_{n}\right) .
$$

This volume is given by:

$$
|D \mathbf{f}(\mathbf{x})| \delta x_{1} \delta x_{2} \ldots \delta x_{n}
$$

where

$$
D \mathbf{f}(\mathbf{x})=\left[\begin{array}{cccc}
\partial f_{1} / \partial x_{1} & \partial f_{1} / \partial x_{2} & \cdots & \partial f_{1} / \partial x_{n} \\
\partial f_{2} / \partial x_{1} & \partial f_{2} / \partial x_{2} & \cdots & \partial f_{2} / \partial x_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\partial f_{n} / \partial x_{1} & \partial f_{n} / \partial x_{2} & \cdots & \partial f_{n} / \partial x_{n}
\end{array}\right]
$$

where all the partial derivatives are evaluated at \mathbf{x}. Thus,

$$
p_{B}(\mathbf{f}(\mathbf{x}))=\frac{p_{A}(\mathbf{x})}{|D \mathbf{f}(\mathbf{x})|}
$$

Notice that $|D \mathbf{f}(\mathbf{x})|$ is the factor that shows up when we perform change of variables during an integration.
In two-dimensional space, we may write:

$$
\mathbf{f}(u, v)=\left[\begin{array}{l}
x(u, v) \\
y(u, v)
\end{array}\right] .
$$

In this case:

$$
|D \mathbf{f}(u, v)|=\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|
$$

Thus,

$$
p_{B}(x, y)=\frac{p_{A}(u, v)}{\left|\begin{array}{ll}
\partial x / \partial u & \partial x / \partial v \\
\partial y / \partial u & \partial y / \partial v
\end{array}\right|}
$$

3.2 The Polar Coordinate Transform

The polar coordinate transforms two numbers (r, ϕ) to a point (x, y) on the plane as follows:

$$
\begin{aligned}
& x=r \cos \phi \\
& y=r \sin \phi
\end{aligned}
$$

which gives:

$$
\begin{aligned}
& \frac{\partial x}{\partial r}=\cos \phi \\
& \frac{\partial x}{\partial \phi}=-r \sin \phi \\
& \frac{\partial y}{\partial r}=\sin \theta \\
& \frac{\partial y}{\partial \phi}=r \cos \phi
\end{aligned}
$$

So, if we sample a polar coordinate (r, ϕ) with probability distribution p_{A}, then the distribution p_{B} of the point (x, y) is given by:

$$
p_{B}(x, y)=\frac{p_{A}(r, \phi)}{\left|\begin{array}{cc}
\cos \phi & -r \sin \phi \\
\sin \theta & r \cos \phi
\end{array}\right|}=\frac{p_{A}(r, \phi)}{r \cos ^{2} \phi+r \sin ^{2} \phi}=\frac{p_{A}(r, \phi)}{r} .
$$

3.3 Sampling Uniformly from the Unit Disk

The unit disk is given by the polar coordinates in the set $[0,1] \times[0,2 \pi)$. How should we be sampling the polar coordinates so that the resulting point distribution is uniform on the disk?

In our case, we have that $p_{B}(x, y)=1 / \pi$. So, we want p_{A} such that:

$$
\begin{aligned}
\frac{1}{\pi} & =\frac{p_{A}(r, \phi)}{r} \\
p_{A}(r, \phi) & =\frac{r}{\pi} .
\end{aligned}
$$

A common strategy is to sample r and ϕ independently so that $p_{A}(r, \phi)=p_{r}(r) p_{\phi}(\phi)$. Moreover, we shall sample ϕ uniformly from the interval $[0,2 \pi)$ so that $p_{\phi}(\phi)=1 /(2 \pi)$. Thus,

$$
p_{r}(r)=2 r .
$$

The above distribution can be sampled with the inversion method. The CDF is given by:

$$
P_{r}(r)=\int_{0}^{r} 2 r^{\prime} \mathrm{d} r^{\prime}=\left[r^{\prime 2}\right]_{0}^{r}=r^{2} .
$$

The inverse CDF is then:

$$
P_{r}^{-1}(t)=\sqrt{t} .
$$

So, we can sample points uniformly from the unit disk by setting:

$$
\begin{aligned}
& r:=\sqrt{\xi_{1}} \\
& \phi=2 \pi \xi_{2}
\end{aligned}
$$

where ξ_{1} and ξ_{2} are two independent random samples chosen uniformly from the interval $[0,1)$.

3.4 Sampling Uniformly from a Triangle

Suppose we have a triangle in a plane with point $A=\left(x_{A}, y_{A}\right), B=\left(x_{B}, y_{B}\right), C=\left(x_{C}, y_{C}\right)$. Let us assume further that $(B-A) \times(C-A)$ is pointing in the positive z-direction so that:

$$
\operatorname{area}(A B C)=\frac{1}{2}\|(B-A) \times(C-A)\|=\frac{1}{2}\left|\begin{array}{ll}
x_{B}-x_{A} & x_{C}-x_{A} \\
y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right|
$$

We wish to find a transformation \mathbf{f} that takes a point (u, v) uniformly and randomly picked from the rectangle $[0,1)^{2}$ so that the distribution of $(x, y)=\mathbf{f}(u, v)$ is uniform on the triangle $A B C$. In this setting, we have that $p_{A}(u, v)=1$, and $p_{B}(x, y)=1 / \operatorname{area}(A B C)$. In other words,

$$
\begin{aligned}
\frac{1}{\operatorname{area}(A B C)} & =\frac{1}{|D \mathbf{f}(u, v)|} \\
|D \mathbf{f}(u, v)| & =\frac{1}{2}\left|\begin{array}{ll}
x_{B}-x_{A} & x_{C}-x_{A} \\
y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right| .
\end{aligned}
$$

One way to generate a point on a triangle is to generate barycentric coordinates (α, β, γ) such that $0 \leq \alpha, \beta, \gamma \leq 1$ and $\alpha+\beta+\gamma=1$. Then, we can get a point on the triangle by computing

$$
\begin{aligned}
(x, y) & =\alpha A+\beta B+\gamma C \\
& =(1-\beta-\gamma) A+\beta B+\gamma C \\
& =A+(B-A) \beta+(C-A) \gamma .
\end{aligned}
$$

In other words,

$$
\begin{aligned}
& x=x_{A}+\left(x_{B}-x_{A}\right) \beta+\left(x_{C}-x_{A}\right) \gamma \\
& y=y_{A}+\left(y_{B}-y_{A}\right) \beta+\left(y_{C}-y_{A}\right) \gamma .
\end{aligned}
$$

Our task is to figure out what β and γ are as functions of u and v.
We have that

$$
\begin{aligned}
& \frac{\partial x}{\partial u}=\left(x_{B}-x_{A}\right) \frac{\partial \beta}{\partial u}+\left(x_{C}-x_{A}\right) \frac{\partial \gamma}{\partial u} \\
& \frac{\partial x}{\partial v}=\left(x_{B}-x_{A}\right) \frac{\partial \beta}{\partial v}+\left(x_{C}-x_{A}\right) \frac{\partial \gamma}{\partial v} \\
& \frac{\partial y}{\partial u}=\left(y_{B}-y_{A}\right) \frac{\partial \beta}{\partial u}+\left(y_{C}-y_{A}\right) \frac{\partial \gamma}{\partial u} \\
& \frac{\partial y}{\partial v}=\left(y_{B}-y_{A}\right) \frac{\partial \beta}{\partial v}+\left(y_{C}-y_{A}\right) \frac{\partial \gamma}{\partial v} .
\end{aligned}
$$

So, the matrix $D \mathbf{f}(u, v)$ is given by:

$$
\begin{aligned}
D \mathbf{f}(u, v) & =\left[\begin{array}{ll}
\left(x_{B}-x_{A}\right) \frac{\partial \beta}{\partial u}+\left(x_{C}-x_{A}\right) \frac{\partial \gamma}{\partial u} & \left(x_{B}-x_{A}\right) \frac{\partial \beta}{\partial u}+\left(x_{C}-x_{A}\right) \frac{\partial \gamma}{\partial v} \\
\left(y_{B}-y_{A} \frac{\partial \beta}{\partial u}+\left(y_{C}-y_{A}\right) \frac{\partial \gamma}{\partial u}\right. & \left(y_{B}-y_{A}\right) \frac{\partial \beta}{\partial v}+\left(y_{C}-y_{A}\right) \frac{\partial v}{\partial v}
\end{array}\right] \\
& =\left[\begin{array}{ll}
x_{B}-x_{A} & x_{C}-x_{A} \\
y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right]\left[\begin{array}{cc}
\partial \beta / \partial u & \partial \beta / \partial v \\
\partial \gamma / \partial u & \partial \gamma / \partial v
\end{array}\right] .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
|D \mathbf{f}(u, v)| & =\left|\begin{array}{ll}
x_{B}-x_{A} & x_{C}-x_{A} \\
y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right|\left|\begin{array}{ll}
\partial \beta / \partial u & \partial \beta / \partial v \\
\partial \gamma / \partial u & \partial \gamma / \partial v
\end{array}\right| \\
\frac{1}{2}\left|\begin{array}{ll}
x_{B}-x_{A} & x_{C}-x_{A} \\
y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right| & =\left|\begin{array}{ll}
x_{B}-x_{A} & x_{C}-x_{A} \\
y_{B}-y_{A} & y_{C}-y_{A}
\end{array}\right|\left|\begin{array}{ll}
\partial \beta / \partial u & \partial \beta / \partial v \\
\partial \gamma / \partial u & \partial \gamma / \partial v
\end{array}\right| \\
\frac{1}{2} & =\left|\begin{array}{ll}
\partial \beta / \partial u & \partial \beta / \partial v \\
\partial \gamma / \partial u & \partial \gamma / \partial v
\end{array}\right| \\
\frac{\partial \beta}{\partial u} \frac{\partial \gamma}{\partial v}-\frac{\partial \beta}{\partial v} \frac{\partial \gamma}{\partial u} & =\frac{1}{2} .
\end{aligned}
$$

What should β and γ be as functions of u and v ? We have the constraint that $0 \leq \beta+\gamma \leq 1$. This condition is satisfied if we let

$$
\begin{aligned}
& \beta=g(u)(1-v) \\
& \gamma=g(u) v
\end{aligned}
$$

where $g(u)$ is a function such that $0 \leq g(u) \leq 1$. With this choice of β and γ, we have that

$$
\frac{1}{2}=\frac{\partial \beta}{\partial u} \frac{\partial \gamma}{\partial v}-\frac{\partial \beta}{\partial v} \frac{\partial \gamma}{\partial u}=\left[g^{\prime}(u)(1-v)\right] g(u)-[-g(u)]\left[g^{\prime}(u) v\right]=g(u) g^{\prime}(u)
$$

It remains to find the function g with makes the above equation holds:

$$
\begin{aligned}
g \frac{\mathrm{~d} g}{\mathrm{~d} u} & =\frac{1}{2} \\
2 g \mathrm{~d} g & =\mathrm{d} u \\
\int 2 g \mathrm{~d} g & =\int \mathrm{d} u \\
g^{2} & =u \\
g & =\sqrt{u}
\end{aligned}
$$

Hence, a uniform distribution of points on triangle $A B C$ can be generated by computing:

$$
(1-\sqrt{u}(1-v)-\sqrt{u} v) A+\sqrt{u}(1-v) B+\sqrt{u} v C
$$

where (u, v) is randomly and uniformly sampled from the rectangle $[0,1)^{2}$.

4 Dealing with 3D Manifolds

4.1 The Main Theorem

Suppose that we have a differentiable function \mathbf{f} that maps a set $A \subseteq \mathbb{R}^{2}$ to a surface $B \subseteq \mathbb{R}^{3}$. We shall write:

$$
\mathbf{f}(u, v)=\left[\begin{array}{l}
f_{x}(u, v) \\
f_{y}(u, v) \\
f_{z}(u, v)
\end{array}\right]
$$

Again, let p_{A} be a probability distribution on A. Given point $(u, v) \in A$, consider the rectangle $[u+$ $\delta u) \times[v+\delta v)$, which has area $\delta u \delta v$. This rectangle has probability mass $p_{A}(u, v) \delta u \delta v$ in it.

We have that:

$$
\begin{aligned}
(u, v) & \mapsto \mathbf{f}(u, v) \\
(u+\delta u, v) & \mapsto \mathbf{f}(u+\delta u, v)=\mathbf{f}(u, v)+\mathbf{f}_{u}(u, v) \delta u \\
(u, v+\delta v) & \mapsto \mathbf{f}(u, v+\delta v)=\mathbf{f}(u, v)+\mathbf{f}_{v}(u, v) \delta v \\
(u+\delta u, v+\delta v) & \mapsto \mathbf{f}(u+\delta u, v+\delta v)=\mathbf{f}(u, v)+\mathbf{f}_{u}(u, v) \delta u+\mathbf{f}_{v}(u, v) \delta v
\end{aligned}
$$

where

$$
\begin{aligned}
& \mathbf{f}_{u}(u, v)=\left[\begin{array}{l}
\frac{\partial f_{x}}{\partial u}(u, v) \\
\frac{\partial f_{y}}{\partial u}(u, v) \\
\frac{\partial f_{z}}{\partial u}(u, v)
\end{array}\right], \text { and } \\
& \mathbf{f}_{v}(u, v)=\left[\begin{array}{l}
\frac{\partial f_{x}}{\partial v}(u, v) \\
\frac{\partial f_{y}}{\partial v}(u, v) \\
\frac{\partial f_{z}}{\partial v}(u, v)
\end{array}\right] .
\end{aligned}
$$

In other words, the rectangle gets mapped to a parallelogram with sides defined by the vector $\mathbf{f}_{u}(u, v) \delta u$ and $\mathbf{f}_{v}(u, v) \delta v$. The area of this parallelogram is given by:

$$
\left\|\mathbf{f}_{u}(u, v) \delta u \times \mathbf{f}_{u}(u, v) \delta v\right\|=\left\|\mathbf{f}_{u}(u, v) \times \mathbf{f}_{u}(u, v)\right\| \delta u \delta v
$$

(Since the notation is getting a little unwieldy, let us drop the (u, v) arguments from the function from now on.) To compute the cross product, we make use of the following identity:

$$
\|\mathbf{a} \times \mathbf{b}\|^{2}+(\mathbf{a} \cdot \mathbf{b})^{2}=(\mathbf{a} \cdot \mathbf{a})(\mathbf{b} \cdot \mathbf{b})
$$

So,

$$
\begin{aligned}
\left\|\mathbf{f}_{u} \times \mathbf{f}_{v}\right\|^{2} & =\left(\mathbf{f}_{u} \cdot \mathbf{f}_{u}\right)\left(\mathbf{f}_{v} \cdot \mathbf{f}_{v}\right)-\left(\mathbf{f}_{u} \cdot \mathbf{f}_{v}\right)^{2} \\
\left\|\mathbf{f}_{u} \times \mathbf{f}_{v}\right\| & =\sqrt{\left(\mathbf{f}_{u} \cdot \mathbf{f}_{u}\right)\left(\mathbf{f}_{v} \cdot \mathbf{f}_{v}\right)-\left(\mathbf{f}_{u} \cdot \mathbf{f}_{v}\right)^{2}}
\end{aligned}
$$

Define

$$
\begin{aligned}
E(u, v) & =\mathbf{f}_{u}(u, v) \cdot \mathbf{f}_{u}(u, v) \\
F(u, v) & =\mathbf{f}_{u}(u, v) \cdot \mathbf{f}_{v}(u, v) \\
G(u, v) & =\mathbf{f}_{v}(u, v) \cdot \mathbf{f}_{v}(u, v)
\end{aligned}
$$

We have that:

$$
\text { area of parallelogram }=\left\|\mathbf{f}_{u} \times \mathbf{f}_{v}\right\|=\sqrt{E G-F^{2}}
$$

In differential geometry, E, F, and G are called the coefficients of the first fundamental form.
As a result, we have that the induced probability distribution is given by:

$$
p_{B}(\mathbf{f}(u, v))=\frac{p_{A}(u, v) \delta u \delta v}{\left\|\mathbf{f}_{u} \times \mathbf{f}_{v}\right\| \delta u \delta v}=\frac{p_{A}(u, v)}{\sqrt{E G-F^{2}}}
$$

4.2 The Spherical Coordinate Transform

The spherical coordinate is the transformation from $(\theta, \phi) \in(0, \pi) \times[0,2 \pi)$ to a point ω on a 3 D sphere S^{2} with:

$$
\omega=\left[\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right]
$$

We then have that:

$$
\begin{aligned}
& \omega_{\theta}=\left[\begin{array}{c}
\cos \theta \cos \phi \\
\cos \theta \sin \phi \\
-\sin \theta
\end{array}\right], \\
& \omega_{\phi}=\left[\begin{array}{c}
-\sin \theta \sin \phi \\
\sin \theta \cos \phi \\
0
\end{array}\right] .
\end{aligned}
$$

So,

$$
\begin{aligned}
E & =\cos ^{2} \theta \cos ^{2} \phi+\cos ^{2} \theta \sin ^{2} \phi+\sin ^{2} \theta \\
& =\cos ^{2} \theta+\sin ^{2} \theta \\
& =1 \\
F & =-\cos \theta \cos \phi \sin \theta \sin \phi+\cos \theta \sin \phi \sin \theta \cos \phi+0 \\
& =0 \\
G & =\sin ^{2} \theta \sin ^{2} \phi+\sin ^{2} \theta \cos ^{2} \phi \\
& =\sin ^{2} \theta \\
\sqrt{E G-F^{2}} & =\sqrt{\sin ^{2} \theta}=|\sin \theta|
\end{aligned}
$$

The inducted probability distribution is given by:

$$
p_{B}(\omega(\theta, \phi))=\frac{p_{A}(\theta, \phi)}{|\sin \theta|}
$$

However, since $\theta \in(0, \theta)$, we have that $\sin \theta>0$. So, we can write:

$$
p_{B}(\omega(\theta, \phi))=\frac{p_{A}(\theta, \phi)}{\sin \theta}
$$

4.3 Uniformly Sampling a Sphere

We will use the identity to construct a sampling algorithm to sample a point on the unit sphere uniformly. The idea is to pick a probability distribution p_{A} on $(\theta, \phi) \in(0, \pi) \times[0,2 \pi)$ such that the induced probability distribution p_{B} is the constant distribution $1 /(4 \pi)$. In other words:

$$
\frac{1}{4 \pi}=\frac{p_{A}(\theta, \phi)}{\sin \theta}
$$

In other words:

$$
p_{A}(\theta, \phi)=\frac{\sin \theta}{4 \pi} .
$$

A common strategy is to sample ϕ independenty from θ so that $p_{A}(\theta, \phi)=p_{\theta}(\theta) p_{\phi}(\phi)$. Moreover, let us sample ϕ uniformly from $[0,2 \pi)$ so that $p_{\phi}(\phi)=1 /(2 \pi)$. In other words,

$$
\begin{aligned}
\frac{p_{\theta}(\theta)}{2 \pi} & =\frac{\sin \theta}{4 \pi} \\
p_{\theta}(\theta) & =\frac{\sin \theta}{2}
\end{aligned}
$$

We can sample $p_{\theta}(\theta)$ using the inversion method. The CDF of p_{Θ} is given by:

$$
P_{\theta}(\theta)=\frac{1}{2} \int_{0}^{\theta} \sin \theta^{\prime} \mathrm{d} \theta^{\prime}=\frac{1}{2}\left[-\cos \theta^{\prime}\right]_{0}^{\theta}=\frac{\cos 0-\cos \theta}{2}=\frac{1-\cos \theta}{2} .
$$

So, the inverse function is given by:

$$
P_{\theta}^{-1}(u)=\cos ^{-1}(1-2 u)
$$

In conclusion, we compute θ and ϕ as:

$$
\begin{aligned}
\theta & :=\cos ^{-1}\left(1-2 \xi_{0}\right) \\
\phi & :=2 \pi \xi_{1}
\end{aligned}
$$

where ξ_{0}, ξ_{1} are two independent random numbers sampled uniformly from the interval $[0,1)$.
Notice, however, that if the end goal is to get a point ω, there is no need to compute θ because θ never appears directly in the expression for ω. More specifically,

$$
\omega=\left[\begin{array}{c}
\sin \theta \cos \phi \\
\sin \theta \sin \phi \\
\cos \theta
\end{array}\right]=\left[\begin{array}{c}
\sqrt{1-\left(1-2 \xi_{0}\right)^{2}} \cos \phi \\
\sqrt{1-\left(1-2 \xi_{0}\right)^{2}} \sin \phi \\
1-2 \xi_{0}
\end{array}\right] .
$$

4.4 Sampling a Cosine-Weighted Hemisphere

In this section, we want to sample the z-positive unit hemisphere such that the probability density being proportional to $\cos \theta$ at each point. In this case:

$$
\begin{aligned}
\frac{\cos \theta}{C} & =\frac{p_{A}(\theta, \phi)}{\sin \theta} \\
\frac{1}{C} \cos \theta \sin \theta & =p_{A}(\theta, \phi),
\end{aligned}
$$

where C is the constant such that $\frac{\cos \theta}{C}$ is a probability distribution on the sphere.
Again, we sample θ and ϕ independently with ϕ being uniform in $[0,2 \pi)$. So,

$$
\frac{2 \pi}{C} \cos \theta \sin \theta=p_{\theta}(\theta) .
$$

The CDF then is given by:

$$
P_{\theta}(\theta)=\frac{2 \pi}{C} \int_{0}^{\theta} \cos \theta^{\prime} \sin \theta^{\prime} \mathrm{d} \theta^{\prime}=\frac{2 \pi}{C}\left[-\frac{\cos ^{2} \theta^{\prime}}{2}\right]_{0}^{\theta}=\frac{\pi}{C}\left(1-\cos ^{2} \theta\right) .
$$

To determine C, note that $P_{\theta}(\pi / 2)=1$, so

$$
1=\frac{\pi}{C}\left(1-\cos ^{2} \frac{\pi}{2}\right)=\frac{\pi}{C}
$$

In other words, $C=\pi$, and $P_{\theta}(\theta)=1-\cos ^{2} \theta$.
Hence, we can sample the cosine-weighted hemisphere by setting:

$$
\begin{aligned}
\cos \theta & :=\sqrt{1-\xi_{0}} \\
\phi & :=2 \pi \xi_{1} .
\end{aligned}
$$

4.5 From Area to Solid Angle

When shading from an area light source, a way to sample the incoming light direction is to sample a point on the light source's surface with some probability density p_{A} and then convert the vector from the shaded point to the sampled point to a unit vector ω. In this section, we find the relation between p_{A} and the induced probability density.

For simplicity, let us say that the shaded point is at the origin and lying on the $x y$-plane so that the normal is the z-axis. Let $\mathbf{r}=\left(r_{x}, r_{y}, r_{z}\right)$ denote the point on the light source. Let \mathbf{n} be the normal at \mathbf{r}, and let \mathbf{s} and \mathbf{t} be the basis of the tangent plane at \mathbf{r} in such a way that $(\mathbf{s}, \mathbf{t}, \mathbf{n})$ is an orthonormal basis. The tangent plane is the set

$$
\left\{\mathbf{r}+u \mathbf{s}+v \mathbf{t} \mid(u, v) \in \mathbb{R}^{2}\right\}
$$

The function \mathbf{f} that maps the tangent plane to the direction is given by:

$$
\omega=\mathbf{f}(u, v)=\frac{\mathbf{r}+u \mathbf{s}+v \mathbf{t}}{\|\mathbf{r}+u \mathbf{s}+v \mathbf{t}\|}
$$

Hence, using Lemma 2 (proven in the appendix), we have:

$$
\begin{aligned}
& \mathbf{f}_{u}(u, v)=\frac{\mathbf{s}}{\|\mathbf{r}+u \mathbf{s}+v \mathbf{t}\|}-\frac{\mathbf{r}+u \mathbf{s}+v \mathbf{t}}{\|\mathbf{r}+u \mathbf{s}+v \mathbf{t}\|^{3}}(\mathbf{r} \cdot \mathbf{s}+u) \\
& \mathbf{f}_{v}(u, v)=\frac{\mathbf{t}}{\|\mathbf{r}+u \mathbf{s}+v \mathbf{t}\|}-\frac{\mathbf{r}+u \mathbf{s}+v \mathbf{t}}{\|\mathbf{r}+u \mathbf{s}+v \mathbf{t}\|^{3}}(\mathbf{r} \cdot \mathbf{t}+v)
\end{aligned}
$$

At $(u, v)=(0,0)$, we have that

$$
\begin{aligned}
& \mathbf{f}_{u}(0,0)=\frac{\mathbf{s}}{\|\mathbf{r}\|}-\frac{\mathbf{r}}{\|\mathbf{r}\|^{3}}(\mathbf{r} \cdot \mathbf{s})=\frac{\mathbf{s}\|\mathbf{r}\|^{2}-\mathbf{r}(\mathbf{r} \cdot \mathbf{s})}{\|\mathbf{r}\|^{3}} \\
& \mathbf{f}_{v}(0,0)=\frac{\mathbf{t}}{\|\mathbf{r}\|}-\frac{\mathbf{r}}{\|\mathbf{r}\|^{3}}(\mathbf{r} \cdot \mathbf{t})=\frac{\mathbf{t}\|\mathbf{r}\|^{2}-\mathbf{r}(\mathbf{r} \cdot \mathbf{t})}{\|\mathbf{r}\|^{3}}
\end{aligned}
$$

So,

$$
\begin{aligned}
& E=\frac{\|\mathbf{r}\|^{4}-2\left\|\mathbf{r} \mathbf{r}^{2}\right\|(\mathbf{r} \cdot \mathbf{s})^{2}+\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{s})}{\|\mathbf{r}\|^{6}}=\frac{\|\mathbf{r}\|^{4}-\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{s})^{2}}{\|\mathbf{r}\|^{6}}=\frac{\|\mathbf{r}\|^{2}-(\mathbf{r} \cdot \mathbf{s})^{2}}{\|\mathbf{r}\|^{4}} \\
& F=-\frac{\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{s})(\mathbf{r} \cdot \mathbf{t})}{\|\mathbf{r}\|^{6}}=-\frac{(\mathbf{r} \cdot \mathbf{s})(\mathbf{r} \cdot \mathbf{t})}{\|\mathbf{r}\|^{4}} \\
& G=\frac{\|\mathbf{r}\|^{2}-(\mathbf{r} \cdot \mathbf{t})^{2}}{\|\mathbf{r}\|^{4}}
\end{aligned}
$$

Next,

$$
\begin{aligned}
E G-F^{2} & =\frac{\|\mathbf{r}\|^{4}-\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{s})^{2}-\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{t})^{2}+(\mathbf{r} \cdot \mathbf{s})^{2}(\mathbf{r} \cdot \mathbf{t})^{2}}{\left\|\mathbf{r}^{8}\right\|}-\frac{(\mathbf{r} \cdot \mathbf{s})^{2}(\mathbf{r} \cdot \mathbf{t})^{2}}{\left\|\mathbf{r}^{8}\right\|} \\
& =\frac{\|\mathbf{r}\|^{4}-\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{s})^{2}-\|\mathbf{r}\|^{2}(\mathbf{r} \cdot \mathbf{t})^{2}}{\left\|\mathbf{r}^{8}\right\|} \\
& =\frac{1}{\|\mathbf{r}\|^{4}}\left[1-\left(\frac{\mathbf{r}}{\|\mathbf{r}\|} \cdot \mathbf{s}\right)^{2}-\left(\frac{\mathbf{r}}{\|\mathbf{r}\|} \cdot \mathbf{t}\right)^{2}\right] \\
& =\frac{1}{\|\mathbf{r}\|^{4}}\left[1-(\hat{\mathbf{r}} \cdot \mathbf{s})^{2}-(\hat{\mathbf{r}} \cdot \mathbf{t})^{2}\right]
\end{aligned}
$$

where $\hat{\mathbf{r}}$ is the unit vector in the direction of \mathbf{r}. Because $\mathbf{s}, \mathbf{t}, \mathbf{n}$ forms an orthonormal basis and $\|\hat{\mathbf{r}}\|=1$, we have that

$$
1=\|\hat{\mathbf{r}}\|^{2}=(\hat{\mathbf{r}} \cdot \mathbf{s})^{2}+(\hat{\mathbf{r}} \cdot \mathbf{t})^{2}+(\hat{\mathbf{r}} \cdot \mathbf{n})^{2} .
$$

So,

$$
E G-F^{2}=\frac{1}{\|\mathbf{r}\|^{4}}\left[1-(\hat{\mathbf{r}} \cdot \mathbf{s})^{2}-(\hat{\mathbf{r}} \cdot \mathbf{t})^{2}\right]=\frac{1}{\|\mathbf{r}\|^{4}}(\hat{\mathbf{r}} \cdot \mathbf{n})^{2}
$$

Thus,

$$
\sqrt{E G-F^{2}}=\sqrt{\frac{(\hat{\mathbf{r}} \cdot \mathbf{n})^{2}}{\|\mathbf{r}\|^{4}}}=\frac{|\hat{\mathbf{r}} \cdot \mathbf{n}|}{\|\mathbf{r}\|^{2}}
$$

In conclusion,

$$
p_{B}(\mathbf{f}(\mathbf{r}))=\frac{\left\|\mathbf{r}^{2}\right\|}{|\hat{\mathbf{r}} \cdot \mathbf{n}|} p_{A}(\mathbf{r})=\frac{\left\|\mathbf{r}^{2}\right\|}{|\cos \theta|} p_{A}(\mathbf{r})
$$

4.6 The Hair Coordinate System Transform

The hair coordinate system maps $(\theta, \phi) \in(\pi / 2, \pi / 2) \times[0,2 \pi)$ to a sphere with the following transformation function:

$$
\omega=\left[\begin{array}{c}
\sin \theta \\
\cos \theta \cos \phi \\
\cos \theta \sin \phi
\end{array}\right] .
$$

So,

$$
\begin{aligned}
\omega_{\theta} & =\left[\begin{array}{c}
\cos \theta \\
-\sin \theta \cos \phi \\
-\sin \theta \sin \phi
\end{array}\right] \\
\omega_{\phi} & =\left[\begin{array}{c}
0 \\
-\cos \theta \sin \phi \\
\cos \theta \cos \phi
\end{array}\right] \\
E & =\cos ^{2} \theta+\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi=1 \\
F & =\sin \theta \cos \theta \cos \phi \sin \phi-\sin \theta \cos \theta \cos \phi \sin \phi=0 \\
G & =\cos ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta \cos ^{2} \phi=\cos ^{2} \theta \\
\sqrt{E G-F^{2}} & =\sqrt{\cos ^{2} \theta-0}=|\cos \theta| .
\end{aligned}
$$

However, since $\theta \in(-\pi / 2, \pi / 2)$, we have that $\cos \theta>0$, so

$$
\sqrt{E G-F^{2}}=\cos \theta
$$

So, the probability density transformation formula is:

$$
p_{B}(\omega(\theta, \phi))=\frac{p_{A}(\theta, \phi)}{\cos \theta}
$$

4.7 Sampling for Diffuse Hair

In this section, we want to sample the sphere so that $p_{B}(\omega) \propto \cos \theta$. Applying the main theorem in this section, we have:

$$
\begin{aligned}
\frac{\cos \theta}{C} & =\frac{p_{A}(\theta, \phi)}{\cos \theta} \\
p_{A}(\theta, \phi) & =\frac{\cos ^{2} \theta}{C}
\end{aligned}
$$

Again, we sample ϕ uniformly from $[0,2 \pi)$, and then sample θ independently from ϕ. So,

$$
\begin{aligned}
p_{\theta}(\theta) & =\frac{2 \pi}{C} \cos ^{2} \theta \\
P_{\theta}(\theta) & =\frac{2 \pi}{C} \int_{-\pi / 2}^{\theta} \cos ^{2} \theta^{\prime} \mathrm{d} \theta^{\prime} \\
& =\frac{2 \pi}{C}\left[\frac{\theta^{\prime}+\sin \theta^{\prime} \cos \theta^{\prime}}{2}\right]_{-\pi / 2}^{\theta} \\
& =\frac{\pi}{C}\left[\theta^{\prime}+\frac{\sin \left(2 \theta^{\prime}\right)}{2}\right]_{-\pi / 2}^{\theta} \\
& =\frac{\pi}{C}\left(\theta+\frac{\sin (2 \theta)}{2}+\frac{\pi}{2}\right) .
\end{aligned}
$$

To find C, we note that $P_{\theta}(\pi / 2)=1$, so

$$
1=\frac{\pi}{C}\left(\frac{\pi}{2}+0+\frac{\pi}{2}\right)=\frac{\pi^{2}}{C}
$$

So, $C=\pi^{2}$, and

$$
P_{\theta}(\theta)=\frac{1}{\pi}\left(\theta+\frac{\sin (2 \theta)}{2}+\frac{\pi}{2}\right) .
$$

The above function cannot be inverted symbolically. So, in Mitsuba's implementation, they solve for it using Brent's method.

5 Appendix

Lemma 2.

$$
\frac{\partial}{\partial u} \frac{\mathbf{a}}{\|\mathbf{a}\|}=\frac{1}{\|\mathbf{a}\|} \frac{\partial \mathbf{a}}{\partial u}-\frac{\mathbf{a}}{\|\mathbf{a}\|^{3}}\left(\mathbf{a} \cdot \frac{\partial \mathbf{a}}{\partial u}\right)
$$

Proof.

$$
\begin{aligned}
\frac{\partial}{\partial u} \frac{\mathbf{a}}{\|\mathbf{a}\|} & =\frac{1}{\|\mathbf{a}\|^{2}}\left(\|\mathbf{a}\| \frac{\partial \mathbf{a}}{\partial u}-\mathbf{a} \frac{\partial\|\mathbf{a}\|}{\partial u}\right)=\frac{1}{\|\mathbf{a}\|^{2}}\left(\|\mathbf{a}\| \frac{\partial \mathbf{a}}{\partial u}-\mathbf{a} \frac{\partial \sqrt{\mathbf{a} \cdot \mathbf{a}}}{\partial u}\right) \\
& =\frac{1}{\|\mathbf{a}\|^{2}}\left(\|\mathbf{a}\| \frac{\partial \mathbf{a}}{\partial u}-\mathbf{a} \frac{1}{2 \sqrt{\mathbf{a} \cdot \mathbf{a}}}\left(2 \mathbf{a} \cdot \frac{\partial \mathbf{a}}{\partial u}\right)\right) \\
& =\frac{1}{\|\mathbf{a}\|^{2}}\left(\|\mathbf{a}\| \frac{\partial \mathbf{a}}{\partial u}-\frac{\mathbf{a}}{\|\mathbf{a}\|}\left(\mathbf{a} \cdot \frac{\partial \mathbf{a}}{\partial u}\right)\right) \\
& =\frac{1}{\|\mathbf{a}\|} \frac{\partial \mathbf{a}}{\partial u}-\frac{\mathbf{a}}{\|\mathbf{a}\|^{3}}\left(\mathbf{a} \cdot \frac{\partial \mathbf{a}}{\partial u}\right)
\end{aligned}
$$

